Mccollumwagner3173
(PsycInfo Database Record (c) 2021 APA, all rights reserved).Extinction-based protocols such as exposure-in-vivo successfully reduce pain-related fear in chronic pain conditions, but return of fear and clinical relapse often occur. Counterconditioning is assumed to attenuate return of fear, likely through changing the negative affective valence of the conditioned stimulus (CS). We hypothesized that counterconditioning would outperform extinction in mitigating return of pain-related fear and decrease CS negative affective valence. Healthy participants performed a conditioning task, in which 2 joystick movements (CSs+) were paired with a painful electrocutaneous stimulus (unconditioned stimulus; pain-US), whereas 2 other movements (CSs-) were not. Subsequently, in the extinction group, 1 CS+ was extinguished (pain-US omission) and the other not, whereas in the counterconditioning group, 1 CS+ was presented with a US of opposite valence (reward-US) and the other was paired with both USs. We tested reinstatement of pain-related fear after 2 unsignalled pain-US presentations. Results showed no group differences in fear reduction and no differences in CS affective valence changes between the extinguished and counterconditioned CS. Remarkably, none of the groups showed reinstatement. Overall, counterconditioning did not appear to be more effective than extinction in reducing pain-related fear and its return. (PsycInfo Database Record (c) 2021 APA, all rights reserved).The current research proposes to incorporate vocational interests into the study of adverse impact (i.e., differential hiring/selection rates between minority and majority groups in employment settings). In the context of high stakes testing (e.g., using cognitive and personality tests), we show how race gaps in vocational interests would correspond to differential rates of job attraction (the attraction process) and various personnel selection outcomes (the selection process), in patterns that are not always intuitive. Using findings from various meta-analyses, we construct a combined correlation matrix of race, vocational interests, cognitive ability, and Conscientiousness; and provide mathematical formulas to assess the role of vocational interests in determining subgroup differences on predictors in applicant pools. ABR238901 Results and empirical examples suggest (a) applicant attraction based on vocational interests can reduce adverse impact potential when the interest favors the minority [majority] group and is negatively [positively] related to the predictor; (b) attraction effects of vocational interests on adverse impact potential are modest; (c) if the vocational interest subgroup mean difference is small relative to other predictors in use, personnel selection on the interest will reduce adverse impact potential; (d) attraction effects tend to dampen or remove the selection effects of vocational interests on adverse impact potential, due to variance restriction on interests in the applicant pool; and (e) selection effects tend to be much stronger than attraction effects. These findings have implications for how adverse impact might differ systematically across job types, partly due to attraction and selection effects involving race differences in vocational interests. (PsycInfo Database Record (c) 2021 APA, all rights reserved).Total synthesis of the pentasaccharide repeating unit of the OPS from Halomonas ventosae RU5S2EL is accomplished through a [3+2] block strategy. Picoloyl-induced hydrogen-bond-assisted aglycon delivery (HAD) is used for two consecutive 1,2-cis-l-rhamnosylations, and remote participation is used for α-selective glucosylation. The choice of 2-aminoethyl glycoside at the reducing end is opted for, leaving the scope for further glycoconjugate formation without hampering the reducing-end stereochemistry.This study explores the synthesis of cyclic cis-vicinal phenyl ethylenes from oxotriphenylhexanoates. The reaction is a BBr3-promoted cyclization of 1,6-ketoesters (1) to five-membered diketo compounds (2). The synthesis is interesting as it constitutes one of the few examples of modular stereoselective synthesis of structures with a cis-oriented vicinal diphenylethylene. The core structure of 2 can be smoothly derivatized, which makes it a promising synthetic building block for further stereoselective synthetic applications.Amines are widely employed as additives for improving the performance of metal halide perovskite optoelectronic devices. However, amines are well-known for their high chemical reactivity, the impact of which has yet to receive enough attention from the perovskite light-emitting diode community. Here, by investigating an unusual positive aging effect of CH3NH3I/CsI/PbI2 precursor solutions as an example, we reveal that amines gradually undergo N-formylation in perovskite precursors over time. This reaction is initialized by hydrolysis of dimethylformamide in the acidic chemical environment. Further investigations suggest that the reaction products collectively impact perovskite crystallization and eventually lead to significantly enhanced external quantum efficiency values, increasing from ∼2% for fresh solutions to ≳12% for aged ones. While this case study provides a positive aging effect, a negative aging effect is possible in other perovksite systems. Our findings pave the way for more reliable and reproducible device fabrication and call for further attention to underlying chemical reactions within the perovskite inks once amine additives are included.Time-dependent density functional theory (TDDFT) simulations are conducted on a series of chiral gold nanowires to explore whether an enhancement of circular dichroism at the plasmon resonance is possible and identify its quantum-mechanical origin. We find that in linear two-dimensional chiral nanowires the dichroic response is suppressed by destructive interference of nearly degenerate components with opposite signs, pointing to this phenomenon as a common and likely origin of the difficulty encountered so far in achieving a plasmonic CD response in experiment and suggesting nevertheless that these opposite components could be "decoupled" by using multiwall arrangements. In contrast, we predict a giant dichroic response for nanowires with three-dimensional helical coiling. We rationalize this finding via an electronic structure analysis of longitudinal and transversal plasmonic excitations and their coupling into chiral components, and we propose a simple formula for the chiral response as a function of structural parameters (nanowire length and coiling number).Dislocations often exhibit unique physical properties distinct from those of the bulk material. However, functional applications of dislocations are challenging due to difficulties in the construction of high-performance devices of dislocations. Here we demonstrate unidirectional single-dislocation Schottky diode arrays in a Fe2O3 thin film on Nb-doped SrTiO3 substrates. Conductivity measurements using conductive atomic force microscopy indicate that a net current will flow through individual dislocation Schottky diodes under forward bias and disappear under reverse bias. Under cyclic bias voltages, the single-dislocation Schottky diodes exhibit a distinct resistive switching behavior containing low-resistance and high-resistance states with a high resistance ratio of ∼103. A combined study of transmission electron microscopy and first-principles calculations reveals that the Fe2O3 dislocations comprise mixed Fe2+ and Fe3+ ions due to O deficiency and exhibit a one-dimensional electrical conductivity. The single-dislocation Schottky diodes may find applications for developing ultrahigh-density electronic and memory devices.This study presents an enantioselective oxidative cyclization of N-allyl carboxamides via a chiral triazole-substituted iodoarene catalyst. The method allows the synthesis of highly enantioenriched oxazolines and oxazines, with yields of up to 94% and enantioselectivities of up to 98% ee. Quaternary stereocenters can be constructed and, besides N-allyl amides, the corresponding thioamides and imideamides are well tolerated as substrates, giving rise to a plethora of chiral 5-membered N-heterocycles. By applying a multitude of further functionalizations, we finally demonstrate the high value of the observed chiral heterocycles as strategic intermediates for the synthesis of other enantioenriched target structures.Screening of a library of small polar molecules against Mycobacterium tuberculosis (Mtb) led to the identification of a potent benzoheterocyclic oxime carbamate hit series. This series was subjected to medicinal chemistry progression underpinned by structure-activity relationship studies toward identifying a compound for proof-of-concept studies and defining a lead optimization strategy. Carbamate and free oxime frontrunner compounds with good stability in liver microsomes and no hERG channel inhibition liability were identified and evaluated in vivo for pharmacokinetic properties. Mtb-mediated permeation and metabolism studies revealed that the carbamates were acting as prodrugs. Toward mechanism of action elucidation, selected compounds were tested in biology triage assays to assess their activity against known promiscuous targets. Taken together, these data suggest a novel yet unknown mode of action for these antitubercular hits.Dissociation of transthyretin (TTR) tetramers may lead to misfolding and aggregation of proamyloidogenic monomers, which underlies TTR amyloidosis (ATTR) pathophysiology. ATTR is a progressive disease resulting from the deposition of toxic fibrils in tissues that predominantly presents clinically as amyloid cardiomyopathy and peripheral polyneuropathy. Ligands that bind to and kinetically stabilize TTR tetramers prohibit their dissociation and may prevent ATTR onset. Drawing from clinically investigated AG10, we designed a constrained congener (14) that exhibits excellent TTR tetramer binding potency, prevents TTR aggregation in a gel-based assay, and possesses desirable pharmacokinetics in mice. Additionally, 14 significantly lowers murine serum retinol binding protein 4 (RBP4) levels despite a lack of binding at that protein's all-trans-retinol site. We hypothesize that kinetic stabilization of TTR tetramers via 14 is allosterically hindering all-trans-retinol-dependent RBP4-TTR tertiary complex formation and that the compound could present ancillary therapeutic utility for indications treated with RBP4 antagonists, such as macular degeneration.Uranium trioxide, UO3, has a T-shaped structure with bent uranyl, UO22+, coordinated by an equatorial oxo, O2-. The structure of cation UO3+ is similar but with an equatorial oxyl, O•-. Neutral and cationic uranium trioxide coordinated by nitrates were characterized by collision induced dissociation (CID), infrared multiple-photon dissociation (IRMPD) spectroscopy, and density functional theory. CID of uranyl nitrate, [UO2(NO3)3]- (complex A1), eliminates NO2 to produce nitrate-coordinated UO3+, [UO2(O•)(NO3)2]- (B1), which ejects NO3 to yield UO3 in [UO2(O)(NO3)]- (C1). Finally, C1 associates with H2O to afford uranyl hydroxide in [UO2(OH)2(NO3)]- (D1). IRMPD of B1, C1, and D1 confirms uranyl equatorially coordinated by nitrate(s) along with the following ligands (B1) radical oxyl O•-; (C1) oxo O2-; and (D1) two hydroxyls, OH-. As the nitrates are bidentate, the equatorial coordination is six in A1, five in B1, four in D1, and three in C1. Ligand congestion in low-coordinate C1 suggests orbital-directed bonding.