Mcclureburnham2545
In oncology, overall survival and progression-free survival are common time-to-event end points used to measure treatment efficacy. Analyses of this type of data rely on a complex statistical framework and the analysis results are only valid when the data meet certain assumptions. This article provides an overview of time-to-event data, the basic mechanics of common analysis methods, and issues often encountered when analyzing such data. Our goal is to provide clinicians and other lung cancer researchers with the knowledge to choose the appropriate time-to-event analysis methods and to interpret the outcomes of such analyses appropriately. We strongly encourage investigators to seek out statisticians with expertise in survival analysis when embarking on studies that include time-to-event data to ensure that their data are collected and analyzed using the appropriate methods.
Preclinical models recently unveiled the vulnerability of LKB1/KRAS comutated NSCLC to metabolic stress-based treatments. Because miR-17 is a potential epigenetic regulator of LKB1, we hypothesized that wild-type LKB1 (LKB1
) NSCLC with high miR-17 expression may be sensitive to an energetic stress condition, and eligible for metabolic frailties-based therapeutic intervention.
We took advantage of NSCLC cell lines with different combinations of KRAS mutation and LKB1 deletion and of patient-derived xenografts (PDXs) with high (LKB1
/miR-17 high) or low (LKB1
/miR-17 low) miR-17 expression. We evaluated LKB1 pathway impairment and apoptotic response to metformin. We retrospectively evaluated LKB1 and miR-17 expression levels in tissue specimens of patients with NSCLC and PDXs. In addition, a lung cancer series from The Cancer Genome Atlas data set was analyzed for miR-17 expression and potential correlation with clinical features.
We identified miR-17 as an epigenetic regulator of LKB1 in NSCLC and coired LKB1 expression and poor outcome, eligible for energy-stress-based treatments.The diagnosis of malignant pleural mesothelioma (MPM) is challenging because of its potential overlap with other neoplasms or even with reactive conditions. DNA methylation analysis is effective in diagnosing tumors. In the present study, this approach was tested for use in MPM diagnosis. The DNA methylation patterns of a discovery cohort and an independent-validation cohort of MPMs were compared to those of 202 cases representing malignant and benign diagnostic mimics (angiosarcoma, desmoid-type fibromatosis, epithelioid sarcoma, leiomyosarcoma, lung adenocarcinoma, lung squamous cell carcinoma, melanoma, nodular fasciitis, reactive mesothelial hyperplasia, sclerosing fibrous pleuritis, solitary fibrous tumor, and synovial sarcoma). By both unsupervised hierarchical clustering and t-distributed stochastic neighbor embedding analysis, MPM samples in the discovery cohort exhibited a DNA methylation profile different from those of other neoplastic and reactive mimics. These results were confirmed in the independent validation cohort and by in silico analysis of the MPM-The Cancer Genome Atlas data set. Copy number variation profiles were also inferred to identify molecular hallmarks of MPM, including CDKN2A and NF2 deletions. Methylation profiling was effective in the diagnosis of MPM, although caution is advised in samples with low tumor cell content.The detection of tumor-specific nucleic acids from blood increasingly is being used as a method of liquid biopsy and minimal residual disease detection. However, achieving high sensitivity and high specificity remains a challenge. Here, we perform a direct comparison of two droplet digital PCR (ddPCR)-based detection methods, circulating plasma tumor RNA and circulating plasma tumor DNA (ptDNA), in blood samples from newly diagnosed Ewing sarcoma patients. First, we developed three specific ddPCR-based assays to detect EWS-FLI1 or EWS-ERG fusion transcripts, which naturally showed superior sensitivity to DNA detection on in vitro control samples. Next, we identified the patient-specific EWS-FLI1 or EWS-ERG breakpoint from five patient tumor samples and designed ddPCR-based, patient-specific ptDNA assays for each patient. These patient-specific assays show that although plasma tumor RNA can be detected in select newly diagnosed patients, positive results are low and statistically unreliable compared with ptDNA assays, which reproducibly detect robust positive results across most patients. Alflutinib Furthermore, the unique disease biology of Ewing sarcoma enabled us to show that most cell-free RNA is not tumor-derived, although cell-free-DNA burden is affected strongly by tumor-derived DNA burden. Here, we conclude that, even with optimized highly sensitive and specific assays, tumor DNA detection is superior to RNA detection in Ewing sarcoma patients.Mesenchymal stromal cell (MSC) transplantation has been investigated as an advanced treatment of heart failure; however, further improvement of the therapeutic efficacy and mechanistic understanding are needed. Our previous study has reported that epicardial placement of fibrin sealant films incorporating rat amniotic membrane-derived (AM)-MSCs (MSC-dressings) could address limitations of traditional transplantation methods. To progress this finding toward clinical translation, this current study aimed to examine the efficacy of MSC-dressings using human AM-MSCs (hAM-MSCs) and the underpinning mechanism for myocardial repair. Echocardiography demonstrated that cardiac function and structure were improved in a rat ischemic cardiomyopathy model after hAM-MSC-dressing therapy. hAM-MSCs survived well in the rat heart, enhanced myocardial expression of reparative genes, and attenuated adverse remodeling. Copy number analysis by qPCR revealed that upregulated reparative genes originated from endogenous rat cells rather than hAM-MSCs. These results suggest hAM-MSC-dressing therapy stimulates a secondary release of paracrine factors from endogenous cells improving myocardial repair ("secondary paracrine effect"), and cardiac M2-like macrophages were identified as a potential cell source of repair. We demonstrated hAM-MSCs increased M2-like macrophages through not only enhancing M2 polarization but also augmenting their proliferation and migration capabilities via PGE2, CCL2, and TGF-β1, resulting in enhanced cardiac function after injury.