Mccartystafford4584

Z Iurium Wiki

This work addresses how vibration stirring, steel-fiber volume ratio, and matrix strength affect the mechanical properties of steel-fiber-reinforced concrete. The goal of the work is to improve the homogeneity of steel-fiber-reinforced concrete, which is done by comparing the mechanical properties of steel-fiber-reinforced concrete fabricated by ordinary stirring with that fabricated by vibration stirring. The results show that the mechanical properties of steel-fiber-reinforced concrete produced by vibration mixing are better than those produced by ordinary mixing. The general trend is that the mechanical properties of steel-fiber concrete have a linear relationship with the matrix strength and the volume ratio of steel fiber. The best mechanical properties are obtained for a steel-fiber volume ratio of less than 1%. We have also established calculation models for the mechanical performance index of vibration, mixing steel-fiber concrete based on the test results. Microscopic studies show that vibration stirring optimizes the microstructure of the transition zone between the concrete interface and the slurry, and improves the homogeneity of the steel-fiber-reinforced concrete, and enhances the adhesion between the mixture components.Nanofluidics is supposed to take advantage of a variety of new physical phenomena and unusual effects at nanoscales typically below 100 nm. However, the current chip-based nanofluidic applications are mostly based on the use of nanochannels with linewidths above 100 nm, due to the restricted ability of the efficient fabrication of nanochannels with narrow linewidths in glass substrates. In this study, we established the fabrication of nanofluidic structures in glass substrates with narrow linewidths of several tens of nanometers by optimizing a nanofabrication process composed of electron-beam lithography and plasma dry etching. Using the optimized process, we achieved the efficient fabrication of fine glass nanochannels with sub-40 nm linewidths, uniform lateral features, and smooth morphologies, in an accurate and precise way. Furthermore, the use of the process allowed the integration of similar or dissimilar material-based ultrasmall nanocomponents in the ultranarrow nanochannels, including arrays of pockets with volumes as less as 42 zeptoliters (zL, 10-21 L) and well-defined gold nanogaps as narrow as 19 nm. We believe that the established nanofabrication process will be very useful for expanding fundamental research and in further improving the applications of nanofluidic devices.Adjuvant chemoradiation (CRT), with high-dose cisplatin remains standard treatment for oral cavity squamous cell carcinoma (OCSCC) with high-risk pathologic features. We evaluated outcomes associated with different cisplatin dosing and schedules, concurrent with radiation (RT), and the effect of cumulative dosing of cisplatin. An IRB-approved collaborative database of patients (pts) with primary OCSCC (Stage I-IVB AJCC 7th edition) treated with primary surgical resection between January 2005 and January 2015, with or without adjuvant therapy, was established from six academic institutions. Patients were categorized by cisplatin dose and schedule, and resultant groups compared for demographic data, pathologic features, and outcomes by statistical analysis to determine disease free survival (DFS) and freedom from metastatic disease (DM). From a total sample size of 1282 pts, 196 pts were identified with high-risk features who were treated with adjuvant CRT. Administration schedule of cisplatin was not significantly associated with DFS. On multivariate (MVA), DFS was significantly better in patients without perineural invasion (PNI) and in those receiving ≥200 mg/m2 cisplatin dose (p less then 0.001 and 0.007). Median DFS, by cisplatin dose, was 10.5 ( less then 200 mg/m2) vs. 20.8 months (≥200 mg/m2). Our analysis demonstrated cumulative cisplatin dose ≥200 mg/m2 was associated with improved DFS in high-risk resected OCSCC pts.ABCB4 (ATP-binding cassette subfamily B member 4) is an ABC transporter expressed at the canalicular membrane of hepatocytes where it ensures phosphatidylcholine secretion into bile. Genetic variations of ABCB4 are associated with several rare cholestatic diseases. The available treatments are not efficient for a significant proportion of patients with ABCB4-related diseases and liver transplantation is often required. The development of novel therapies requires a deep understanding of the molecular mechanisms regulating ABCB4 expression, intracellular traffic, and function. Using an immunoprecipitation approach combined with mass spectrometry analyses, we have identified the small GTPase RAB10 as a novel molecular partner of ABCB4. Our results indicate that the overexpression of wild type RAB10 or its dominant-active mutant significantly increases the amount of ABCB4 at the plasma membrane expression and its phosphatidylcholine floppase function. Contrariwise, RAB10 silencing induces the intracellular retention of ABCB4 and then indirectly diminishes its secretory function. Taken together, our findings suggest that RAB10 regulates the plasma membrane targeting of ABCB4 and consequently its capacity to mediate phosphatidylcholine secretion.We present a simulation study investigating the feasibility of electrical impedance tomography (EIT) as a low cost, noninvasive technique for hyperthermia (HT) treatment monitoring and adaptation. Temperature rise in tissues leads to perfusion and tissue conductivity changes that can be reconstructed in 3D by EIT to noninvasively map temperature and perfusion. In this study, we developed reconstruction methods and investigated the achievable accuracy of EIT by simulating HT treatmentlike scenarios, using detailed anatomical models with heterogeneous conductivity distributions. The impact of the size and location of the heated region, the voltage measurement signal-to-noise ratio, and the reference model personalization and accuracy were studied. selleckchem Results showed that by introducing an iterative reconstruction approach, combined with adaptive prior regions and tissue-dependent penalties, planning-based reference models, measurement-based reweighting, and physics-based constraints, it is possible to map conductivity-changes throughout the heated domain, with an accuracy of around 5% and cm-scale spatial resolution.

Autoři článku: Mccartystafford4584 (Myers Best)