Mccartypearce6928

Z Iurium Wiki

Microplastics (MPs) are ubiquitous in the environment and pose substantial threats to the water ecosystem. selleck inhibitor However, the impact of natural aging of MPs on their toxicity has rarely been considered. This study found that visible light irradiation with hydrogen peroxide at environmentally relevant concentration for 90 days significantly altered the physicochemical properties and mitigated the toxicity of polyamide (PA) fragments to infantile zebrafish. The size of PA particles was reduced from ∼8.13 to ∼6.37 μm, and nanoparticles were produced with a maximum yield of 5.03%. The end amino groups were volatilized, and abundant oxygen-containing groups (e.g., hydroxyl and carboxyl) and carbon-centered free radicals were generated, improving the hydrophilicity and colloidal stability of degraded MPs. Compared with pristine PA, the depuration of degraded MPs mediated by multixenobiotics resistance was much quicker, leading to markedly lower bioaccumulation in fish and weaker inhibition on musculoskeletal development. By integrating transcriptomics and transgenic zebrafish [Tg(lyzEGFP)] tests, differences in macrophages-triggered proinflammatory effects, apoptosis via IL-17 signaling pathway, and antioxidant damages were identified as the underlying mechanisms for the attenuated toxicity of degraded MPs. This work highlights the importance of natural degradation on the toxicity of MPs, which has great implications for risk assessment of MPs.Semiconductor nanowires (NWs) capped with metal nanoparticles (NPs) show multifunctional and synergistic properties, which are important for applications in the fields of catalysis, photonics, and electronics. Conventional colloidal syntheses of this class of hybrid structures require complex sequential seeded growth, where each section requires its own set of growth conditions, and methods for preparing such wires are not universal. Here, we report a new and general method for synthesizing metal-semiconductor nanohybrids based on particle catalysts, prepared by scanning probe block copolymer lithography, and chemical vapor deposition. In this process, metallic heterodimer NPs were used as catalysts for NW growth to form semiconductor NWs capped with metallic particles (Au, Ag, Co, Ni). Interestingly, the growth processes for NWs on NPs are regioselective and controlled by the chemical composition of the metallic heterodimer used. Using a systematic experimental approach, paired with density functional theory calculations, we were able to postulate three different growth modes, one without precedent.Heterostructures of two-dimensional (2D) transition metal dichalcogenides (TMDs) and inorganic semiconducting zero-dimensional (0D) quantum dots (QDs) offer useful charge and energy transfer pathways, which could form the basis of future optoelectronic devices. To date, most have focused on charge transfer and energy transfer from QDs to TMDs, that is, from 0D to 2D. Here, we present a study of the energy transfer process from a 2D to 0D material, specifically exploring energy transfer from monolayer tungsten disulfide (WS2) to near-infrared emitting lead sulfide-cadmium sulfide (PbS-CdS) QDs. The high absorption cross section of WS2 in the visible region combined with the potentially high photoluminescence (PL) efficiency of PbS QD systems makes this an interesting donor-acceptor system that can effectively use the WS2 as an antenna and the QD as a tunable emitter, in this case, downshifting the emission energy over hundreds of millielectron volts. We study the energy transfer process using photoluminescence excitation and PL microscopy and show that 58% of the QD PL arises due to energy transfer from the WS2. Time-resolved photoluminescence microscopy studies show that the energy transfer process is faster than the intrinsic PL quenching by trap states in the WS2, thus allowing for efficient energy transfer. Our results establish that QDs could be used as tunable and high PL efficiency emitters to modify the emission properties of TMDs. Such TMD-QD heterostructures could have applications in light-emitting technologies or artificial light-harvesting systems or be used to read out the state of TMD devices optically in various logic and computing applications.Organolead halide perovskites have drawn significant attention from the scientific community as one of the most attractive materials in optoelectronics, especially in the field of photovoltaics. In this study, we focus on using halide perovskites in processing thin film transistors (TFTs). Halide perovskites have high solution processability and excellent carrier transport characteristics, in particular for holes. The present work aims to fill a gap in oxide-based technology. It concerns the process of using high-stable and reliable p-type oxide-based devices to target CMOS technology (complementary metal-oxide-semiconductor). We report on a solution-processed high-performance TFT based on methylammonium lead iodide (CH3NH3PbI3) perovskite semiconductor films, which shows promise for devices that can be simple to manufacture with high reliability, reproducibility, and excellent stability in atmospheric conditions. To achieve a highly stable perovskite semiconductor film, we introduce diethylsulfide in the perovskite precursor. The TFT shows a stable p-type behavior when operated at low voltages (≤-2 V) and has a current modulation of >104, an almost negligible hysteresis, and average saturation mobility of about 18.8 cm2 V-1 s-1, taken over 50 devices tested (the highest one measured was ∼23.2 cm2 V-1 s-1). This is the highest value until now reported in the literature. In addition, we demonstrate that perovskite TFTs can be fabricated at temperatures as low as 150 °C on flexible substrates with a saturation mobility of ∼11.5 cm2 V-1 s-1. The high-performance perovskite TFT with excellent stability is a promising candidate for the next generation of p-type transistors for a plethora of low-cost electronics applications.The shuttle effect of dissolved polysulfides produced during the operation of lithium-sulfur batteries is the most serious and fundamental problem among many challenges. We propose a strategy via in situ formation of a functionalized molecule with a dual-terminal coupling function to bind the dissolved polysulfide intermediates, thus turning them back into solid-state organopolysulfide complexes by molecule binding, and then the polysulfides can be pinned on the cathode firmly. The dual-terminal coupling functional molecule binder (MB), which is formed in situ by reaction between quinhydrone (QH) and lithium, can not only bind polysulfides by reversible chemical coordination but also promote the conversion of polysulfides during cycling synchronously. In theory, with the dual-terminal coupling function, MB can bind polysulfide intermediates to copolymerize them, forming -[MB-Li2S n ]- that has faster reaction activity and redox conversion kinetics in comparison with simple Li2S n . With the MB, the Li-S battery exhibits a large initial capacity of 1347 mAh g-1 at 0.

Autoři článku: Mccartypearce6928 (Mathis Clemmensen)