Mccannrussell7121
nting for 28-43% of the outpatient burden. The value of new ABSSSI therapies will be driven by eliminating the need for PICC line, reducing length of stay and the ability to completely avoid a hospital stay.Quality-guided phase unwrapping (QGPU) has been proven as an effective phase unwrapping method. As the QGPU assumes that the true phase map is continuous, it suffers from the discontinuity problem. To solve this problem, the windowed Fourier transform (WFT) based methods have been adopted to obtain effective quality measures. Nevertheless, in some special cases, using the quality maps from the WFT-based methods could not lead to a correct result. In this paper, we propose a method that incorporates the GVF snake model to assist the unwrapping process. This new method achieves better results than using the WFT-based methods directly in some discontinuous examples.We investigate the plasmonic analog of electromagnetically induced transparency (EIT) using two adjacent graphene-based Fabry-Perot (F-P) resonators side coupling to a nanoribbon waveguide. By the coupling mode theory in time and F-P resonant model, the destructive interference from the coupling of the two F-P resonators results in the EIT-like optical response. The induced peak and width of the transparency window can be dynamically manipulated by varying the coupling distance of the two resonators, and the transparent window is easily shifted by tuning the resonator length or the chemical potential of the graphene nanoribbon. In order to verify the characteristics of slow light, the group index profile is analyzed at different coupling distances. The proposed graphene-based EIT-like system could open up new opportunities for potential applications in plasmonic slow light and optical information buffering devices.Nulling interferometry has been identified as a competitive technique for the detection of extrasolar planets. In its basic form, the technique consists of combining out-of-phase a single pair of telescopes to effectively null the light of a bright star and reveal the dim glow of the companion. However, in order to mitigate the effect of the stellar leaks through the interferometer, a broad angular central null is required. The hierarchical combination of several pairs of telescopes can accomplish this task. We have manufactured and tested with monochromatic light an integrated optics component, which combines a linear array of four telescopes in the nulling mode envisaged by Angel and Woolf [Astroph. see more J.475, 373-379 (1997).10.1086/apj.1997.475.issue-1ASJOAB0004-637X]. By simulating in the laboratory the motion of a star in the sky, we could measure the expected angular transmission of the four-telescope nuller. Moreover, the tests have demonstrated a broad nulling scaling as the fourth power of the baseline delay.We present a cost-effective, simple, and fast digital holographic microscopy method based upon Rayleigh-Sommerfeld backpropagation for identification of the geometrical shape of a cell. The method was tested using synthetic hologram images generated by ray-tracing software and from experimental images of semitransparent spherical beads and living red blood cells. Our results show that, by only using the real part of the back-reconstructed amplitude, the proposed method can provide information of the geometrical shape of the object and at the same time accurately determine the axial position of the object under study. The proposed method can be used in flow chamber assays for pathophysiological studies where fast morphological changes of cells are studied in high numbers and at different heights.Computer-generated holograms (CGHs) provide an approach to high-precision metrology of aspherics. A CGH is designed under the trade-off among size, mapping distortion, and line spacing. This paper describes an optimal design method based on the parametric model for tilt carrier frequency CGHs placed outside the interferometer focus points. Under the condition of retaining an admissible size and a tolerable mapping distortion, the optimal design method has two advantages (1) separating the parasitic diffraction orders to improve the contrast of the interferograms and (2) achieving the largest line spacing to minimize sensitivity to fabrication errors. This optimal design method is applicable to common concave aspherical surfaces and illustrated with CGH design examples.In a recent study we reported on the gradient index (GRIN) lens Stokes polarimeter (GLP) [Opt. Lett.39, 2656 (2014)10.1364/OL.39.002656OPLEDP0146-9592]. With a simple architecture, this polarimeter can measure the state of polarization in a single shot. In this article, we present further studies for improving the performance of the GLP. Detailed discussions are presented on the optimization process of the GLP based on different choices of data from the CCD images. It is pointed out that many optimization techniques, although developed for other types of Stokes polarimeters, can also be applied to the GLP because the GRIN lens can traverse all possible retardance and fast axis modulations.The effective treatment of periodontitis involves the detection and removal of subgingival dental calculus. However, subgingival calculus is more difficult to detect than supragingival calculus because it is firmly attached to root surfaces within periodontal pockets. To achieve a smooth root surface, clinicians often remove excessive amounts of root structure because of decreased visibility. In addition, enamel pearl, a rare type of ectopic enamel formation on the root surface, can easily be confused with dental calculus in the subgingival environment. In this study, we developed a fiber-probe swept-source optical coherence tomography (SSOCT) technique and combined it with the quantitative measurement of an optical parameter [standard deviation (SD) of the optical coherence tomography (OCT) intensity] to differentiate subgingival calculus from sound enamel, including enamel pearl. Two-dimensional circumferential images were constructed by rotating the miniprobe (0.9 mm diameter) while acquiring image lines, and the adjacent lines in each rotation were stacked to generate a three-dimensional volume. In OCT images, compared to sound enamel and enamel pearls, dental calculus showed significant differences (P less then 0.001) in SD values. Finally, the receiver operating characteristic curve had a high capacity (area under the curve=0.934) for discriminating between healthy regions (including enamel pearl) and dental calculus.We report the ablation results for surface modification of polyimide Kapton HN foils using ultrashort femtosecond laser pulses. The modification threshold fluences for 75 μm thick films of polyimide were determined at different incident angles (0°, 20°, 30°, 45°, and 50°) for vertical and horizontal diameters. Ablation at oblique angles was investigated as such interactions are found during laser procedures with the eye that require scanning of the beam and are very important to know for the treatment of various eye diseases. Polyimide, in this study, was considered as a model for corneal sculpting. Use of ultrashort femtosecond laser pulses for high-precision patterning of the sample, without thermal damage to the surroundings, has been investigated. The relationship between the incidence angle with ablation threshold fluence, threshold energy, and beam radius are described. Also, threshold energies and threshold fluences for different thicknesses of polyimide were investigated.This research focuses on measuring the impact of truncations on the dispersion characteristics of wedge waves propagating along the wedge tip by using the laser-generated ultrasound. First, the finite element method was used to simulate laser-induced wedge waves and the dispersion curves were obtained by using the 2D Fourier transformation method. Pulsed laser excitation and laser-based wedge wave detection were also utilized to investigate these characteristics experimentally. For the 20° and 60° line wedges, both experimental and numerical results indicated that a nonideal wedge tip had great impact on the wedge waves. The modes of the 20° line wedge with truncations presented anomalous dispersion, low mode closed to high mode in high frequency, and the characteristics of antisymmetric Lamb waves as truncation increased. Meanwhile, the modes of the 60° line wedge with truncations showed the characteristics of antisymmetric Lamb waves, and the A mode was also observed clearly. The findings of this study can be used to evaluate and detect wedge structure.The identification and classification of plastics plays an important role in waste management and recycling processes. Present electrical and optical sorting techniques lack the required resolution for accurate identification in a high throughput manner for a diverse set of plastics commonly found in municipal waste. In this work a multi-spectral infrared spectroscopic technique is employed to construct a unique fingerprint library of 12 plastic resin groups that are commonly encountered in municipal waste. We test the proposed method in a blind plastic identification experiment, which shows excellent unbiased identification accuracy. This simple optical technique in combination with the multi-spectral library will enable high throughput and accurate detection of various plastics from recovered solid waste.We present a new simple optical design for a cat's eye retroreflector. We describe the design of the new optical configuration and its use in tilt-immune interferometry where it enables the tracking of the displacement of a plane target mirror with minimum sensitivity to its tilt about axes orthogonal to the interferometer's optical axis. In this application the new cat's eye does not behave as a perfect retroreflector and we refer to it as a "pseudo"-cat's eye (PCE). The device allows, for the first time, tilt-immune interferometric displacement measurements in cases where the nominal distance to the target mirror is significantly larger than the length of the cat's eye. We describe the general optical characteristics of the PCE and compare its performance in our application with that of a conventional cat's eye optical configuration using ABCD matrices and Zemax analyses. We further suggest a simple modification to the design that would enable the PCE to behave as a perfect cat's eye, and this design may provide an advantageous solution for other applications.Issues related to moving elements in space and instruments working in broader wavelength ranges lead to the need for robust polarimeters that are efficient on a wide spectral domain and adaptable to space conditions. As part of the UVMag consortium, which was created to develop spectropolarimetric UV facilities in space, such as the Arago mission project, we present an innovative concept of static spectropolarimetry. We studied a static and polychromatic method for spectropolarimetry, which is applicable to stellar physics. Instead of temporally modulating the polarization information, as is usually done in spectropolarimeters, the modulation is performed in a spatial direction, orthogonal to the spectral one. Thanks to the proportionality between phase retardance imposed by a birefringent material and its thickness, birefringent wedges can be used to create this spatial modulation. The light is then spectrally cross dispersed, and a full Stokes determination of the polarization over the whole spectrum can be obtained with a single-shot measurement.