Mccallmcmillan7368

Z Iurium Wiki

Oxytocin receptor (OXTR) is involved in social behaviors, thermoregulation, and milk ejection, yet little is known about its role in breast cancer. To investigate the role of OXTR in mammary gland development and tumorigenesis, a transgenic mouse model of OXTR overexpression (++Oxtr) was used. Overexpression of OXTR-induced progressive mammary hyperplasia, unexpected milk production, and tumorigenesis in females. OXTR-induced mammary tumors showed ERBB2 upregulation and mixed histological subtypes with predomination of papillary and medullary carcinomas. OXTR overexpression led to an activation of prolactin (PRL)/p-STAT5 pathway and created a microenvironment that promotes mammary-specific tumorigenesis. PRL inhibitor bromocriptine (Br) could mitigate OXTR-driven mammary tumor growth. The study demonstrates Oxtr is an oncogene and a potential drug target for HER2-type breast cancer.B10 cells are regulatory B cells capable of producing IL-10 for maintaining immune homeostasis. Dysregulation of B10 cells occurs in autoimmune and inflammatory diseases. Modulation or adoptive transfer of B10 cells is a promising therapeutic strategy. The short-chain fatty acids (SCFAs), the metabolites of microbiota, play a critical role in maintaining immune homeostasis and are the potential drugs for the modulation of B10 cells. It is not clear whether and how SCFAs upregulate the frequency of B10 cells. Here, we found that SCFAs could promote murine and human B10 cell generation in vitro. Upregulation of B10 cells by butyrate or pentanoate was also observed in either healthy mice, mice with dextran sodium sulfate (DSS)-induced colitis, or mice with collagen-induced arthritis. Moreover, SCFA treatment could ameliorate clinical scores of colitis and arthritis. Adoptive transfer of B cells pretreated with butyrate showed more alleviation of DSS-induced colitis than those without butyrate. A further study demonstrates that SCFAs upregulate B10 cells in a manner dependent on their histone deacetylase (HDAC) inhibitory activity and independent of the G-protein-coupled receptor pathway. Transcriptomic analysis indicated that the MAPK signaling pathway was enriched in B10 cells treated with butyrate. A study with inhibitors of ERK, JNK, and p38 MAPK demonstrated that activating p38 MAPK by butyrate is critical for the upregulation of B10 cells. Moreover, HDAC inhibitor has similar effects on B10 cells. Our study sheds light on the mechanism underlying B10 cell differentiation and function and provides a potential therapeutic strategy with SCFAs and HDAC inhibitors for inflammation and autoimmune diseases.Genes with cross-cancer aberrations are most likely to be functional genes or potential therapeutic targets. Here, we found a total of 137 genes were ectopically expressed in eight cancer types, of which Holliday junction recognition protein (HJURP) was significantly upregulated in prostate cancer (PCa). Moreover, patients with higher HJURP mRNA and protein levels had poorer outcomes, and the protein levels served as an independent prognosis factor for the overall survival of PCa patients. Functionally, ectopic HJURP expression promoted PCa cells proliferation in vitro and in vivo. Mechanistically, HJURP increased the ubiquitination of cyclin-dependent kinase inhibitor 1 (CDKN1A) via the GSK3β/JNK signaling pathway and decreased its stability. This study investigated the role of HJURP in PCa proliferation and may provide a novel prognostic and therapeutic target for PCa.Long noncoding RNAs (lncRNAs) emerge as essential roles in the regulation of alternative splicing (AS) in various malignancies. Serine- and arginine-rich splicing factor 1 (SRSF1)-mediated AS events are the most important molecular hallmarks in cancer. Nevertheless, the biological mechanism underlying tumorigenesis of lncRNAs correlated with SRSF1 in esophageal squamous cell carcinoma (ESCC) remains elusive. In this study, we found that lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) was upregulated in ESCC clinical samples, which associated with poor prognosis. Through RNA interference and overexpression approaches, we confirmed that DGCR5 contributed to promote ESCC cell proliferation, migration, and invasion while inhibited apoptosis in vitro. Mechanistically, DGCR5 could directly bind with SRSF1 to increase its stability and thus stimulate alternative splicing events. Furthermore, we clarified that SRSF1 regulated the aberrant splicing of myeloid cell leukemia-1 (Mcl-1) and initiated a significant Mcl-1L (antiapoptotic) isoform switch, which contributed to the expression of the full length of Mcl-1. Moreover, the cell-derived xenograft (CDX) model was validated that DGCR5 could facilitate the tumorigenesis of ESCC in vivo. Collectively, our findings identified that the key biological role of lncRNA DGCR5 in alternative splicing regulation and emphasized DGCR5 as a potential biomarker and therapeutic target for ESCC.Atrophic fracture nonunion poses a significant clinical problem with limited therapeutic interventions. In this study, we developed a unique nonunion model with high clinical relevance using serum transfer-induced rheumatoid arthritis (RA). Arthritic mice displayed fracture nonunion with the absence of fracture callus, diminished angiogenesis and fibrotic scar tissue formation leading to the failure of biomechanical properties, representing the major manifestations of atrophic nonunion in the clinic. Mechanistically, we demonstrated that the angiogenesis defect observed in RA mice was due to the downregulation of SPP1 and CXCL12 in chondrocytes, as evidenced by the restoration of angiogenesis upon SPP1 and CXCL12 treatment in vitro. In this regard, we developed a biodegradable scaffold loaded with SPP1 and CXCL12, which displayed a beneficial effect on angiogenesis and fracture repair in mice despite the presence of inflammation. Hence, these findings strongly suggest that the sustained release of SPP1 and CXCL12 represents an effective therapeutic approach to treat impaired angiogenesis and fracture nonunion under inflammatory conditions.Zinc-finger of the cerebellum 2 (Zic2) is widely implicated in cancers, but the role of Zic2 in tumorigenesis is bilateral. A recent study indicated that Zic2 could render colon cancer cells more resistant to low glucose-induced apoptosis. However, the functional roles of Zic2 in colon cancer and the underlying molecular mechanism remain elusive. Herein, we demonstrated that Zic2 was highly expressed in colon cancer tissues and correlated with poor survival. Knockdown of Zic2 inhibited colon cancer cell growth, arrested the cell cycle transition from G0/G1 to S phase, and suppressed tumor sphere formation in vitro; in addition, silencing Zic2 retarded xenograft tumor formation in vivo. Tucidinostat price Consistently, ectopic expression of Zic2 had the opposite effects. Mechanistically, Zic2 executed its oncogenic role in colon cancer by enhancing Wnt/β-catenin signaling. Zic2 directly binds to the promoter of Axin2 and transcriptionally represses Axin2 expression and subsequently promotes the accumulation and nuclear translocation of β-catenin.

Autoři článku: Mccallmcmillan7368 (Drake Bragg)