Mccaffreyengland1241

Z Iurium Wiki

Moreover, the well-established translational pathway of radiopharmaceuticals may also facilitate the translation of discoveries from benchtop to clinical investigation in contrast to other imaging modalities to fulfill the goal of precision medicine. The relationship between inflammation occurring within the plaque and its proneness to rupture has been well documented. Therefore, an active effort has been significantly devoted to develop radiopharmaceuticals specifically to measure CVD inflammatory status, and potentially elucidate those plaques which are prone to rupture. In the following review, molecular imaging of inflammatory biomarkers will be briefly discussed.Cardiovascular disease due to atherosclerosis is the number one cause of morbidity and mortality worldwide. In the past twenty years, compelling preclinical and clinical data have indicated that a maladaptive inflammatory response plays a crucial role in the development of atherosclerosis initiation and progression in the vasculature, all the way to the onset of life-threatening cardiovascular events. Furthermore, inflammation is key to heart and brain damage and healing after myocardial infarction or stroke. Recent evidence indicates that this interplay between the vasculature, organs target of ischemia and the immune system is mediated by the activation of hematopoietic organs (bone marrow and spleen). In this evolving landscape, non- invasive imaging is becoming more and more essential to support either mechanistic pre-clinical studies to investigate the role of inflammation in cardiovascular disease (CVD), or as a translational tool to quantify inflammation in the cardiovascular system and hematopoietic organs in patients. In this review paper, we will describe the clinical applications of non-invasive imaging to quantify inflammation in the vasculature, infarcted heart and brain, and hematopoietic organs in patients with cardiovascular disease, with specific focus on [18F]FDG PET and other novel inflammation-specific radiotracers. Furthermore, we will briefly describe the most recent clinical applications of other imaging techniques such as MRI, SPECT, CT, CEUS and OCT in this arena.This chapter discusses the potential role of geographic information systems (GIS) for infection control within the hospital system. The chapter provides a brief overview of the role of GIS in public health and reviews current work applying these methods to the hospital setting. Finally, it outlines the potential opportunities and challenges for adapting GIS for use in the hospital setting for infection prevention. A targeted literature review is used to illustrate current use of GIS in the hospital setting. The discussion of complexity was compiled using the nonadoption, abandonment, scale-up, spread, and sustainability (NASSS) framework. Challenges and opportunities were then extracted from this exercise by the authors. There are multiple challenges to implementation of a Hospital GIS for infection prevention, mainly involving the domains of technology, organization, and adaptation. Use of a transdisciplinary approach can address many of these challenges. More research, specifically prospective, reproducible clinical trials, needs to be done to better assess the potential impact and effectiveness of a Hospital GIS in real-world settings. This chapter highlights a powerful but rarely used tool for infection prevention within the hospital. Given the importance of reducing hospital-acquired infection rates, it is vital to identify relevant methods from other fields that could be translated into the field of hospital epidemiology. learn more Copyright © 2019 Emerald Publishing Limited.Since the publication of the report "To Err Is Human Building a Safer Health System" by the US Institute of Medicine in 2000, much has changed with regard to patient safety. Many of the more recent initiatives to improve patient safety target the behavior of health care staff (e.g., training, double-checking procedures, and standard operating procedures). System-based interventions have so far received less attention, even though they produce more substantial improvements, being less dependent on individuals' behavior. One type of system-based intervention that can benefit patient safety involves improvements to hospital design. Given that people's working environments affect their behavior, good design at a systemic level not only enables staff to work more efficiently; it can also prevent errors and mishaps, which can have serious consequences for patients. While an increasing number of studies have demonstrated the effect of hospital design on patient safety, this knowledge is not easily accessible to clinicians, practitioners, risk managers, and other decision-makers, such as designers and architects of health care facilities. This is why the Swiss Patient Safety Foundation launched its project, "More Patient Safety by Design Systemic Approaches for Hospitals," which is presented in this chapter. Copyright © 2019 Emerald Publishing Limited.Failure to rescue events, or events involving preventable deaths from complications, are a significant contributor to inpatient mortality. While many interventions have been designed and implemented over several decades, this patient safety issue remains at the forefront of concern for most hospitals. In the first part of this study, the development and implementation of one type of highly studied and widely adopted rescue intervention, algorithm-based patient assessment tools, is examined. The analysis summarizes how a lack of systems-oriented approaches in the design and implementation of these tools has resulted in suboptimal understanding of patient risk of mortality and complications and the early recognition of patient deterioration. The gaps identified impact several critical aspects of excellent patient care, including information-sharing across care settings, support for the development of shared mental models within care teams, and access to timely and accurate patient information. This chapter describes the use of several system-oriented design and implementation activities to establish design objectives, model clinical processes and workflows, and create an extensible information system model to maximize the benefits of patient state and risk assessment tools in the inpatient setting. A prototype based on the product of the design activities is discussed along with system-level considerations for implementation. This study also demonstrates the effectiveness and impact of applying systems design principles and practices to real-world clinical applications. Copyright © 2019 Emerald Publishing Limited.

Autoři článku: Mccaffreyengland1241 (Brun Ebbesen)