Mcbridebrun8628
Long-term follow-up data were available on 133 (90%) participants. Change scores in confidence to meet program objectives increased between pre- and postworkshop (range of increase 0.6-0.8,
< .01). Knowledge scores increased significantly between pre- and postworkshop (average improvement of 3.2 points,
< .01). Overall program satisfaction was high (mean 5.0, standard deviation [0.2] on a five-point scale). read more Seventy-seven (60%) reported that they had made at least one clinical practice or institutional policy change at 3 months.
An interprofessional education program with online modules, in-person interactive sessions, and simulation activities is a promising strategy to deliver cancer drug safety content to practicing oncology clinicians.
An interprofessional education program with online modules, in-person interactive sessions, and simulation activities is a promising strategy to deliver cancer drug safety content to practicing oncology clinicians.Traditional diagnostic systems went beyond empirical evidence on the structure of mental health. Consequently, these diagnoses do not depict psychopathology accurately, and their validity in research and utility in clinicalpractice are therefore limited. The Hierarchical Taxonomy of Psychopathology (HiTOP) consortium proposed a model based on structural evidence. It addresses problems of diagnostic heterogeneity, comorbidity, and unreliability. We review the HiTOP model, supporting evidence, and conceptualization of psychopathology in this hierarchical dimensional framework. The system is not yet comprehensive, and we describe the processes for improving and expanding it. We summarize data on the ability of HiTOP to predict and explain etiology (genetic, environmental, and neurobiological), risk factors, outcomes, and treatment response. We describe progress in the development of HiTOP-based measures and in clinical implementation of the system. Finally, we review outstanding challenges and the research agenda. HiTOP is of practical utility already, and its ongoing development will produce a transformative map of psychopathology.A vast share of the population-attributable risk for autism relates to inherited polygenic risk. A growing number of studies in the past five years have indicated that inherited susceptibility may operate through a finite number of early developmental liabilities that, in various permutations and combinations, jointly predict familial recurrence of the convergent syndrome of social communication disability that defines the condition. Here, we synthesize this body of research to derive evidence for a novel developmental substructure for autism, which has profound implications for ongoing discovery efforts to elucidate its neurobiological causes, and to inform future clinical and biomarker studies, early interventions, and personalized approaches to therapy.The surfaces of all living organisms and most secreted proteins share a common feature They are glycosylated. As the outermost-facing molecules, glycans participate in nearly all immunological processes, including driving host-pathogen interactions, immunological recognition and activation, and differentiation between self and nonself through a complex array of pathways and mechanisms. These fundamental immunologic roles are further cast into sharp relief in inflammatory, autoimmune, and cancer disease states in which immune regulation goes awry. Here, we review the broad impact of glycans on the immune system and discuss the changes and clinical opportunities associated with the onset of immunologic disease.Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3' untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3' UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.The IL-17 family is an evolutionarily old cytokine family consisting of six members (IL-17A through IL-17F). IL-17 family cytokines signal through heterodimeric receptors that include the shared IL-17RA subunit, which is widely expressed throughout the body on both hematopoietic and nonhematopoietic cells. The founding family member, IL-17A, is usually referred to as IL-17 and has received the most attention for proinflammatory roles in autoimmune diseases like psoriasis. However, IL-17 is associated with a wide array of diseases with perhaps surprisingly variable pathologies. This review focuses on recent advances in the roles of IL-17 during health and in disease pathogenesis. To decipher the functions of IL-17 in diverse disease processes it is useful to first consider the physiological functions that IL-17 contributes to health. We then discuss how these beneficial functions can be diverted toward pathogenic amplification of deleterious pathways driving chronic disease.Aquaporins function as water and neutral solute channels, signaling hubs, disease virulence factors, and metabolon components. We consider plant aquaporins that transport ions compared to some animal counterparts. These are candidates for important, as yet unidentified, cation and anion channels in plasma, tonoplast, and symbiotic membranes. For those individual isoforms that transport ions, water, and gases, the permeability spans 12 orders of magnitude. This requires tight regulation of selectivity via protein interactions and posttranslational modifications. A phosphorylation-dependent switch between ion and water permeation in AtPIP2;1 might be explained by coupling between the gates of the four monomer water channels and the central pore of the tetramer. We consider the potential for coupling between ion and water fluxes that could form the basis of an electroosmotic transducer. A grand challenge in understanding the roles of ion transporting aquaporins is their multifunctional modes that are dependent on location, stress, time, and development.