Mcallisterrosenthal6629

Z Iurium Wiki

Temporality is an essential characteristic of many real-world networks and dramatically affects the spreading dynamics on networks. selleck chemicals llc In this paper, we propose an information spreading model on temporal networks with heterogeneous populations. Individuals are divided into activists and bigots to describe the willingness to accept the information. Through a developed discrete Markov chain approach and extensive numerical simulations, we discuss the phase diagram of the model and the effects of network temporality. From the phase diagram, we find that the outbreak phase transition is continuous when bigots are relatively rare, and a hysteresis loop emerges when there are a sufficient number of bigots. The network temporality does not qualitatively alter the phase diagram. However, we find that the network temporality affects the spreading outbreak size by either promoting or suppressing, which relies on the heterogeneities of population and of degree distribution. Specifically, in networks with homogeneous and weak heterogeneous degree distribution, the network temporality suppresses (promotes) the information spreading for small (large) values of information transmission probability. In networks with strong heterogeneous degree distribution, the network temporality always promotes the information spreading when activists dominate the population, or there are relatively fewer activists. Finally, we also find the optimal network evolution scale, under which the network information spreading is maximized.This paper proposes a novel surrogate method of classification of breath sound signals for auscultation through the principal component analysis (PCA), extracting the features of a phase portrait. The nonlinear parameters of the phase portrait like the Lyapunov exponent, the sample entropy, the fractal dimension, and the Hurst exponent help in understanding the degree of complexity arising due to the turbulence of air molecules in the airways of the lungs. Thirty-nine breath sound signals of bronchial breath (BB) and pleural rub (PR) are studied through spectral, fractal, and phase portrait analyses. The fast Fourier transform and wavelet analyses show a lesser number of high-intense, low-frequency components in PR, unlike BB. The fractal dimension and sample entropy values for PR are, respectively, 1.772 and 1.041, while those for BB are 1.801 and 1.331, respectively. This study reveals that the BB signal is more complex and random, as evidenced by the fractal dimension and sample entropy values. The signals are classified by PCA based on the features extracted from the power spectral density (PSD) data and the features of the phase portrait. The PCA based on the features of the phase portrait considers the temporal correlation of the signal amplitudes and that based on the PSD data considers only the signal amplitudes, suggesting that the former method is better than the latter as it reflects the multidimensional aspects of the signal. This appears in the PCA-based classification as 89.6% for BB, a higher variance than the 80.5% for the PR signal, suggesting the higher fidelity of the phase portrait-based classification.We formulate a tumor-immune interaction model with a constant delay to capture the behavior following application of a dendritic cell therapy. The model is validated using experimental data from melanoma-induced mice. Through theoretical and numerical analyses, the model is shown to produce rich dynamics, such as a Hopf bifurcation and bistability. We provide thresholds for tumor existence and, in a special case, tumor elimination. Our work indicates a sensitivity in model outcomes to the immune response time. We provide a stability analysis for the high tumor equilibrium. For small delays in response, the tumor and immune system coexist at a low level. Large delays give rise to fatally high tumor levels. Our computational and theoretical work reveals that there exists an intermediate region of delay that generates complex oscillatory, even chaotic, behavior. The model then reflects uncertainty in treatment outcomes for varying initial tumor burdens, as well as tumor dormancy followed by uncontrolled growth to a lethal size, a phenomenon seen in vivo. Theoretical and computational analyses suggest efficacious treatments to use in conjunction with the dendritic cell vaccine. Additional analysis of a highly aggressive tumor additionally confirms the importance of representation with a time delay, as periodic solutions are strictly able to be generated when a delay is present.In recent years, data-driven methods for discovering complex dynamical systems in various fields have attracted widespread attention. These methods make full use of data and have become powerful tools to study complex phenomena. In this work, we propose a framework for detecting dynamical behaviors, such as the maximum likelihood transition path, of stochastic dynamical systems from data. For a stochastic dynamical system, we use the Kramers-Moyal formula to link the sample path data with coefficients in the system, then use the extended sparse identification of nonlinear dynamics method to obtain these coefficients, and finally calculate the maximum likelihood transition path. With two examples of stochastic dynamical systems with additive or multiplicative Gaussian noise, we demonstrate the validity of our framework by reproducing the known dynamical system behavior.In the absence of effective vaccine/antiviral strategies for reducing the burden of the coronavirus disease 2019 (COVID-19) pandemic in India, the main focus has been on basic non-pharmaceutical interventions (NPIs), such as nationwide lockdown (travel restrictions and the closure of schools, shopping malls, and worshipping and other gathering places), quarantining of exposed individuals, and isolation of infected individuals. In the present study, we propose a compartmental epidemic model incorporating quarantine and isolation compartments to (i) describe the current transmission patterns of COVID-19 in India, (ii) assess the impact of currently implemented NPIs, and (iii) predict the future course of the pandemic with various scenarios of NPIs in India. For R01, the system has one unstable disease free equilibrium and a unique locally stable endemic equilibrium. By using the method of least squares and the best fit curve, we estimate the model parameters to calibrate the model with daily new confirmed cases and cumulative confirmed cases in India for the period from May 1, 2020 to June 25, 2020.

Autoři článku: Mcallisterrosenthal6629 (McLean MacDonald)