Mcallisterlynn1180
To investigate the quantitative profiles of brain grey matter (GM) in pediatric drug-naïve ADHD patients using synthetic magnetic resonance imaging (SyMRI). A total of 37 drug-naïve pediatric ADHD and 27 age- and gender-matched healthy controls (HC) were enrolled in this study. Each subject underwent both SyMRI and conventional 3D T1-FSPGR scans. Quantitative parameters, T1 and T2 maps, were extracted from the SyMRI data. Between-group quantitative maps were compared using a general linear model analysis. Pearson correlation analysis was conducted to assess the association between significantly altered MR indices and clinical measurements in ADHD. Compared with the HC group, altered T1 and T2 relaxometry times in the ADHD group were mainly distributed in GM regions of the cerebellum, attention and execution control network, default mode network, and limbic areas. Moreover, the T1 value of the right cerebellum 8 was negatively correlated with the attention concentration level in ADHD (R = 0.140, P = 0.0225). With regards to T2 map, the associations were observed between the attention level of ADHD patients and left fusiform gyrus (R = 0.251, P = 0.0016), and right cerebellum crus2 (R = 0.142, P = 0.0214). Altered T1, T2 values found in specific regions of GM, including cerebellum, attention and execution control network, default mode network, and limbic areas, may reveal widespread micromorphology changes, i.e., brain iron deficiency, low myelin content, and enlarged vascular interstitial space in ADHD patients. Thus, T1, T2 values might be promising imaging markers for future ADHD studies.
Physical activity is a well-established strategy to alleviate breast cancer-related adverse outcomes. To optimise health benefits, behaviour change theories provide frameworks to support women in improving their physical activity. This review aimed to evaluate (i) the effects of behaviour change theory-based physical activity interventions for women with breast cancer and (ii) the application of these theories.
Seven online databases were searched. Trials were included if randomised and controlled, involved physical activity interventions ≥ 12weeks duration, used a behaviour change theory, and participants were < 3years post-cancer treatment. Risk of bias and theory use were assessed. Data were synthesised narratively and meta-analysed.
Forty articles describing 19 trials were included. Overall risk of bias was moderately high. Post-intervention pooled effect estimates were medium for self-reported (SMD = 0.57) and objectively measured physical activity (SMD = 0.52). Most trials cited the social cognitive theory (n = 10) and transtheoretical model (n = 9). Trials rarely applied theories in their entirety, expounded on behavioural mechanisms, or tailored interventions according to behavioural constructs. The most commonly used types of behavioural techniques were goals and planning (n = 18), shaping of knowledge (n = 18), feedback and monitoring (n = 17), and comparisons of outcomes (n = 17).
The included trials were effective for increasing physical activity in women with breast cancer. Epacadostat in vitro Theories were applied using a wide range of approaches and levels of rigour, although shared the use of common behavioural techniques.
Future research may benefit breast cancer survivors by more comprehensively applying behaviour change theories, emphasising individual patient needs and goals.
Future research may benefit breast cancer survivors by more comprehensively applying behaviour change theories, emphasising individual patient needs and goals.
CogMed Working Memory Training (CWMT) is a computer-based program shown to improve working memory (WM) among those with cognitive impairments. No study to date has investigated its feasibility, acceptability, and satisfaction in adult patients with glioma, despite the well-documented incidence of WM impairment in this population.
Twenty patients with glioma and objective and/or perceived WM deficits enrolled in the study 52% high-grade, 60% female, Mage = 47 (range = 21-72years). Adverse events were monitored to determine safety. Feasibility and acceptability were assessed based on established metrics. Satisfaction was explored by exit-interviews. Neurocognitive tests and psychological symptoms were analyzed at baseline and post-CWMT to estimate effect sizes.
Of 20 enrolled patients, 16 completed the intervention (80% retention rate). Reasons for withdrawal included time burden (n = 2); tumor-related fatigue (n = 1) or loss to follow-up (n = 1). No adverse events were determined to be study-related. Adhlar populations. Only moderate perceived benefit was reported despite demonstrated improvements in objectively-assessed WM. This may indicate that the time commitment and intervention intensity (5 weeks of 50-min training sessions on 5 days/week) outweighed the perceived benefits of the program. (Trial Registration Number NCT03323450 registered on 10/27/2017).Glucocorticoids (GCs) regulate astrocyte function, while glutamine synthetase (GS), an enzyme highly expressed in astrocytes, is one of the most remarkable GCs-induced genes. GCs mediate their effects through their cognate glucocorticoid receptor (GRα and GRβ isoforms); however, the mechanism via which these isoforms regulate GS activity in astrocytes remains unknown. We used dexamethasone (DEX), a classical GRα/GRβ agonist, RU486, which is a specific GRβ ligand, and Compound A, a known "dissociated" ligand, to delineate the mechanism via which GR modulates GS activity. Aged Mouse Cerebral Hemisphere astrocytes were treated with DEX (1 μM), RU486 (1 nM-1 μM) or compound A (10 μM), alone or in combination with DEX. GS activity and expression, GR isoforms (mRNA and protein levels), and GRα subcellular trafficking were measured. DEX increased GS activity in parallel with GRα nuclear translocation. RU486 increased GS activity in absence of GRα nuclear translocation implicating thus a role of GRβ-mediated mechanism compound A had no effect on GS activity implicating a GRα-GRE-mediated mechanism. None of the compounds affected whole-cell GRα protein content. DEX reduced GRα and GRβ mRNA levels, while RU486 increased GRβ gene expression. We provide evidence that GS activity, in astrocytes, is regulated via GRα- and GRβ-mediated pathways with important implications in pathological conditions in which astrocytes are involved.We have identified three Microbacterium strains, A18JL200T, NY27T, and WY121T, that produce C50 carotenoids. Taxonomy shows they represent three novel species. These strains shared less then 98.5% 16S rRNA gene sequence identity with each other and were closely related to Microbacterium aquimaris JCM 15625T, Microbacterium yannicii JCM 18959T, Microbacterium ureisolvens CFH S00084T, and Microbacterium hibisci CCTCC AB 2016180T. Digital DNA-DNA hybridization (dDDH) values and average nucleotide identity (ANI) showed differences among the three strains and from their closest relatives, with values ranging from 20.4% to 34.6% and 75.5% to 87.6%, respectively. These values are below the threshold for species discrimination. Both morphology and physiology also differed from those of phylogenetically related Microbacterium species, supporting that they are indeed novel species. These strains produce C50 carotenoids (mainly decaprenoxanthin). Among the three novel species, A18JL200T had the highest total yield in carotenoids (6.1 mg/L or 1.2 mg/g dry cell weight). Unusual dual isoprenoid biosynthetic pathways (methylerythritol phosphate and mevalonate pathways) were annotated for strain A18JL200T. In summary, we found strains of the genus Microbacterium that are potential producers of C50 carotenoids, but their genome has to be investigated further.Streptococcus suis serotype 2 (S. suis 2) is an important zoonotic pathogen that presents a significant threat both to pigs and to workers in the pork industry. The initial steps of S. suis 2 pathogenesis are unclear. In this study, we found that the type II histidine triad protein HtpsC from the highly virulent Chinese isolate 05ZYH33 is structurally similar to internalin A (InlA) from Listeria monocytogenes, which plays an important role in mediating listerial invasion of epithelial cells. To determine if HtpsC and InlA function similarly, an isogenic htpsC mutant (ΔhtpsC) was generated in S. suis by homologous recombination. The htpsC deletion strain exhibited a diminished ability to adhere to and invade epithelial cells from different sources. Double immunofluorescence microscopy also revealed reduced survival of the ΔhtpsC mutant after co-cultivation with epithelium. Adhesion to epithelium and invasion by the wild type strain was inhibited by a monoclonal antibody against E-cadherin. In contrast, the htpsC-deficient mutant was unaffected by the same treatment, suggesting that E-cadherin is the host-cell receptor that interacts with HtpsC and facilitates bacterial internalization. Based on these results, we propose that HtpsC is involved in the process by which S. suis 2 penetrates host epithelial cells, and that this protein is an important virulence factor associated with cell adhesion and invasion.Candida albicans is an opportunistic human pathogen that exists as yeast, hyphal or pseudohyphal forms depending on pH, nutrients, and temperature. The morphological transition from yeast to hyphae, which is required for the complete virulence of C. albicans, is controlled by many transcription factors that activate or repress hypha-specific genes. The C. albicans transcriptional factor Cas5, a key regulator of genes involved in cell wall integrity, affects the susceptibility of C. albicans to fluconazole, an inhibitor of ergosterol synthesis. In this study, we found that deletion of CAS5 in C. albicans decreased the expression levels of a set of ergosterol biosynthesis genes, such as ERG2, ERG3, ERG5, ERG6, ERG11, and ERG24, resulting in the accumulation of lanosterol and zymosterol, which are intermediate metabolites in the ergosterol biosynthesis pathway. Interestingly, it was observed that the cas5Δ/Δ mutant could not maintain the yeast form under non-hypha-inducing conditions, while the CAS5-overexpressing cells could not form hyphae under hypha-inducing conditions. Consistent with these observations, the cas5Δ/Δ mutant highly expressed hypha-specific genes, ALS3, ECE1, and HWP1, under non-hypha-inducing conditions. In addition, CAS5 transcription was significantly downregulated immediately after hyphal initiation in the wild-type strain. Furthermore, the cas5Δ/Δ mutant reduced the transcription of NRG1, which encodes a major repressor of hyphal morphogenesis, while Cas5 overexpression increased the transcription of NRG1 under hypha-inducing conditions. Collectively, this study suggests the potential role of Cas5 as a repressor of hypha-specific genes during yeast-form growth of C. albicans.During a study of the marine actinobacterial biodiversity, a large number of Brevibacterium strains were isolated. Of these, five that have relatively low 16S rRNA gene similarity (98.5-99.3%) with validly published Brevibacterium species, were chosen to determine taxonomic positions. On the basis of 16S rRNA gene sequence analysis and BOX-PCR fingerprinting, strains o2T, YB235T, and WO024T were selected as representative strains. Genomic analyses, including average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH), clearly differentiated the three strains from each other and from their closest relatives, with values ranging from 82.8% to 91.5% for ANI and from 26.7% to 46.5% for dDDH that below the threshold for species delineation. Strains YB235T, WO024T, and o2T all exhibited strong and efficient decolorization activity in congo red (CR) dyes, moderate decolorization activity in toluidine blue (TB) dyes and poor decolorization in reactive blue (RB) dyes. Genes coding for peroxidases and laccases were identified and accounted for these strains' ability to effectively oxidize a variety of dyes with different chemical structures.