Maynardschou5051

Z Iurium Wiki

1% after 10 minutes of 1H DNP. The approach does not require extensive pulse sequence optimization procedures and can easily accommodate high concentrations of 13C-labelled molecules.Dangling bond (DB) bands in IR spectra, above 3600 cm-1, are a source of information on structural properties of amorphous water ice, and especially on ice mixtures of water and other frozen gases. BMS309403 We deal in this paper with the spectroscopic behavior of DB bands of CH4/H2O mixtures. We use ab initio methodology to predict theoretical results which are compared with experimental results. Our model mixtures are created by inserting a variable number of molecules of either species into a cell of appropriate size to reach an initial density of 1 g cm-3, which can be modified by including an empty space at the top, to simulate pores. The cell is taken as a unit cell for a solid state calculation The structure of the mixture is optimized and the IR spectrum is calculated for the converged geometry. We find two different kinds of dangling bonds, in which the O-H stretching responsible for this mode is directed either to an empty space of a pore or towards a nearby CH4 molecule, with which some interaction takes place. The spectral characteristics of these two DB types are clearly different, and follow satisfactorily the pattern observed in experimental spectra. Estimated band strengths for these DB bands are given for the first time.Pt-group metal (PGM)-free catalysts of the Me-N-C type based on abundant and inexpensive elements have gained importance in the field of oxygen reduction reaction (ORR) electrocatalysis due to their promising ORR-activities. Their insufficient stability, however, has fueled the interest in obtaining an in-depth understanding of their composition, which requires highly sensitive techniques compatible with their low metal contents (typically less then 5 wt%). In the particular context of iron-based materials, 57Fe-Mössbauer spectroscopy is often used to provide such compositional information, but requires (partially) 57Fe-enriched precursors. As a consequence, the extrapolation of conclusions drawn from Mössbauer measurements on 57Fe-enriched catalysts to equivalent materials with the standard isotope distribution relies on the assumption that the metal precursor's isotopic profile does not affect the catalysts' composition and ORR-activity. To verify this hypothesis, in this study we prepared two series of Fe-based catalysts using distinctively different synthesis approaches and various relative contents of 57Fe-enriched precursors, and observed that the extent of the latter parameter significantly affected the catalysts' ORR-activity. This effect was successfully correlated with the Fe-speciation of the catalysts inferred from the characterization of these samples with Mössbauer and X-ray absorption spectroscopies. Ultimately, these results highlight the crucial importance of verifying the consistency of the catalysts' activity and composition upon comparing standard and 57Fe-enriched samples.The malononitrile group is considered one of the strongest natural electron-withdrawing groups in a chemist's arsenal. However, surprisingly little is known about how this group functions in push-pull fluorophores. In a recent computational study, we reported that replacing the ketone group of the traditional push-pull dye Laurdan with a malononitrile group significantly improves the optical properties while retaining the membrane behavior of the parent molecule Laurdan. Motivated by these results, we report here the synthesis and photophysical characterization of the said compound, 6-(1-undecyl-2,2-dicyanovinyl)-N,N-dimethyl-2-naphthylamine (CN-Laurdan). To our surprise, this new CN-Laurdan probe is found to be much less bright than the parent Laurdan due to a large drop in the fluorescence quantum yield. Using computational methods, we determine that the origin of this low quantum yield is related to the existence of a non-radiative decay pathway related to a rotation of the malononitrile moiety, suggesting that the molecule could nonetheless function very well as a molecular rotor. We confirm experimentally that CN-Laurdan functions as a molecular rotor by measuring the quantum yield in methanol/glycerol mixtures of increasing viscosity. Specifically, we found a consistent increase in the quantum yield across the entire range of tested viscosities.Atomic layer deposition (ALD) is a nanopreparation technique for materials and is widely used in the fields of microelectronics, energy and catalysis. ALD methods for metal sulfides, such as Al2S3 and Li2S, have been developed for lithium-ion batteries and solid-state electrolytes. In this work, using density functional theory calculations, the possible reaction pathways of the ALD of Al2S3 using trimethylaluminum (TMA) and H2S were investigated at the M06-2X/6-311G(d, p) level. Al2S3 ALD can be divided into two consecutive and complementary half-reactions involving TMA and H2S, respectively. In the TMA half-reaction, the methyl group can be eliminated through the reaction with the sulfhydryl group on the surface. This process is a ligand exchange reaction between the methyl and sulfhydryl groups via a four-membered ring transition state. TMA half-reaction with the sulfhydrylated surface is more difficult than that with the hydroxylated surface. When the temperature increases, the reaction requires more energy, owing to the contribution of the entropy. In the H2S half-reaction, the methyl group on the surface can further react with the H2S precursor via a four-membered ring transition state. The orientation of H2S and more molecules have minimal effect on the H2S half-reaction. The reaction involving H2S through a six-membered ring transition state is unfavorable. In addition, the methyl and sulfhydryl groups on the surface can both react with the adjacent sulfhydryl group on the subsurface to form and release CH4 or H2S in the two half-reactions. Furthermore, sulfhydryl elimination occurs more easily than methyl elimination on the surface. These findings for the TMA and H2S half-reactions of Al2S3 ALD may be used for studying precursor chemistry and improvements in the preparation of other metal sulfides for emerging applications.

Autoři článku: Maynardschou5051 (Kang Drejer)