Maureranker5117

Z Iurium Wiki

In this framework, regarding the outset, the relationships among the criteria/sub-criteria are obtained by FDEMATEL method. Then, initial weights of the criteria/sub-criteria are measured by FBWM method. Next, the final weights of criteria/sub-criteria considering the interrelationships are calculated by FANP. Finally, the performance of the suppliers is evaluated by FIS method. To show the applicability of this hybrid decision-making framework, an industrial case of palm oil in Malaysia is presented. The findings indicate the high performance of the proposed framework in this concept and identify the most important criteria including the cost in general aspects, resource consumption as the most crucial sustainable criterion and agility as the most important resilient criterion.This work explored the use of porous carbon (PC) materials converted from waste lignin as raw materials for the removal of chloramphenicol (CAP) in water. The PC with controllable pores was prepared through a facile, cost-effective one-step method. The physical and chemical properties of the material were characterized by BET, SEM, FT-IR, and XRD, and the best conditions for preparation were selected based on the results of adsorption experiments. The PC, which was prepared at reaction temperature of 800 °C and the K2CO3/sodium lignosulfonate mass ratio of 4, namely PC-800-4, had a high specific surface area (1305.5 m2 g-1) and pore volume (0.758 cm3 g-1). At a lower initial concentration of CAP (C0 = 120 mg L-1), the maximum adsorption capacity of this adsorbent was 534.0 mg g-1 at 303 K. In addition, PC-800-4 maintained good adsorption performance in a wide pH range and strongly resisted the interference of ions and humic acid. The results showed that the adsorption removal CAP was based on physical adsorption and chemical adsorption as a process supplement. The advantages of wide sources, high efficiency and speed, wide application, and rich oxygen-containing functional groups made the adsorbent have great application potential for removal chloramphenicol from water.High-siliceous/calcareous mineral granules may cause cytotoxicity by attaching to cell membranes. In this research, giant (GUVs) and small unilamellar vesicles (SUVs) were used as model membranes for studying the interaction between high-siliceous/calcareous mineral granules (micro calcite, micro quartz, nano calcium carbonate, and nano silica) and artificial membranes. Confocal laser scanning microscopy (CLSM) and fluorescence labeling experiments suggest that nano calcium carbonate (nano CaCO3) and nano silica (nano SiO2) induce gelation by disrupting the oppositely charged membranes, indicating the important role of electrostatic forces. Thereby, the mineral granule size affects the electrostatic interactions and thus leading to the damage of the membranes. FTIR spectra and molecular dynamics reveal that mineral granules mainly interact with -PO2-, -OH, and -C-N(CH3)3+ groups in phospholipids. The electrostatic force between nano minerals and phospholipids is greater in the case SiO2 when compared to CaCO3. Moreover, nano SiO2 forms the strongest hydrogen bond with the -PO2- group as confirmed by FTIR. Thus, nano SiO2 causes the greatest damage to membranes. This research provides a deeper understanding of the mechanism regarding the interaction between inhalable mineral granules and cell membranes.In recent years, there has been a great movement towards the generation of knowledge related to the biorefinery concept. First-generation biorefineries bear the stigma of using arable land and edible crops for fuel instead of as sources of food and feed. However, second-generation biorefineries have not reached the level of full technical feasibility. Bearing in mind the objective of sugar production from sugar, starch, or lignocellulosic raw materials, the purpose of this study is to assess the environmental impact of first- and second-generation biorefineries, considering as an example for the comparative evaluation, the production of sugar fractions from crops (starch and sugar crops), and lignocellulosic biomass (hardwood and softwood). The characterization results were obtained using the ReCiPe 1.1 model, implemented through the SimaPro 9.0 software. Both production systems are inherently different and have strengths and weaknesses that must be carefully analyzed. The resulting environmental profile shows that the silviculture of wood contributes less to the environmental impact than cropping activities in most impact categories. In general, this study suggests that first-generation systems are burdened environmentally by the use of fertilizers, which have a significant impact on categories such as marine and freshwater eutrophication and terrestrial acidification, while second-generation systems are limited by the intensive processing steps needed for delignification, typically involving the use of chemicals and/or energy. LCA in early stages of the production of bio-based building blocks, rather than on the manufacture of biofuels or bioplastics, allows the precise identification of the environmental burdens that may be influencing the overall environmental profile of a biorefinery.The synergistic removal of multi-pollutants, including particles, SO2, and NO2, is a key concern in the process of flue gas purification, during which the supersaturated environment is an essential premise for the nucleation and deep reduction of particles. this website The condensation of desulfurized flue gas using heat exchangers can not only recover condensed water and latent heat but also create supersaturated environment to promote the flue gas purification. In this study, an experimental system for desulfurized flue gas condensation is established. The effect and associated mechanism of condensation process on the removal of multi-pollutions are clarified. The results show that particles with an aerodynamic diameter larger than 2.5 μm accounts for 50% in mass proportion. The flue gas temperature drop has positive influence to the increase of the ideal supersaturation degree, which is beneficial for the removal of particles (especially when the aerodynamic diameter is less than 1 μm), SO2, and NO2. The ideal supersaturation degree slightly reduces with the rise of inlet flue gas temperature, which can promote the removal efficiency of small particles, while weaken that of large particles, SO2, and NO2.

Autoři článku: Maureranker5117 (Holm Ebsen)