Matzenmarshall4462
The reactions of [PhI(pyridine)2]2+, PhI(OAc)2 and PhI(OTf)(OAc) with Ph3As, Ph3Sb and Ph3Bi are described. The reactions of [PhI(pyridine)2]2+ with Ph3Sb and Ph3Bi afford dicationic Pn(v) complexes ligated by pyridine in one step. These were previously reported by Burford in multi-step syntheses. Reactions with PhI(OAc)2, which were already known for Sb and Bi giving Pn(v) diacetates, were confirmed to give the same type of compound for As. Reactions with PhI(OAc)(OTf) were less selective, resulting in the isolation of iodonium cations [Ph-I-Ph]+ for As and Bi, while Ph3Sb gave an oxobridged di-antimony species characteristic of the decomposition of a high valent triflate bound species.Conductive metal-organic frameworks (MOFs) have been studied extensively in applications like water electrolysis, gas storage, and supercapacitors due to their high conductivity and large pore volume. In this communication, we report the first use of a conductive Ni-MOF as a non-noble-metal catalyst for efficient electro-oxidation of glucose in alkaline electrolyte. As an electrochemical sensor for glucose detection, this Ni-MOF shows a fast response time of less than 3 s, a low detection limit of 0.66 μM (S/N = 3), and a high sensitivity of 21 744 μA mM-1 cm-2. This glucose sensor also displays excellent selectivity, stability and reproducibility, and its application for the detection of glucose in real samples is also demonstrated successfully.Conventional approaches to mitigate fouling of membrane surfaces impart hydrophilicity to the membrane surface, which increases the water of hydration and fluidity near the surface. By contrast, we demonstrate here that tuning the membrane surface energy close to that of the dispersive component of water surface tension (21.8 mN m-1) can also improve the antifouling properties of the membrane. Specifically, ultrafiltration (UF) membranes were first modified using polydopamine (PDA) followed by grafting of amine-terminated polysiloxane (PSi-NH2). For example, with 2 g L-1 PSi-NH2 coating solution, the obtained coating layer contains 53% by mass fraction PSi-NH2 and exhibits a total surface energy of 21 mN m-1, decreasing the adsorption of bovine serum albumin by 44% compared to the unmodified membrane. When challenged with 1 g L-1 sodium alginate in a constant-flux crossflow system, the PSi-NH2-grafted membrane exhibits a 70% lower fouling rate than the pristine membrane at a water flux of 110 L (m2 h)-1 and good stability when cleaned with NaOH solutions.Amphipathic peptides that partition into lipid bilayers affect the curvature elastic properties of their host. Some of these peptides are able to shift the Gaussian modulus to positive values, thus triggering an instability with respect to the formation of saddle curvatures. To characterize the generic aspects of the underlying mechanism, we employ a molecular lipid model that accounts for the interfacial tension between the polar and apolar regions of the membrane, for interactions between the lipid headgroups, and for the energy to stretch or compress the hydrocarbon chains. Peptides are modeled as cylinders that partition into the host membrane in a parallel orientation where they diminish the space available to the lipid headgroups and chains. selleckchem The penetration depth into the membrane is determined by the angular size of the peptide's hydrophilic region. We demonstrate that only peptides with a small angular size of their hydrophilic region have an intrinsic tendency to render the Gaussian modulus more positive, and we identify conditions at which the Gaussian modulus adopts a positive sign upon increasing the peptide concentration. Our model allows us to also incorporate electrostatic interactions between cationic peptides and anionic lipids on the level of the linear Debye-Hückel model. We show that electrostatic interactions tend to shift the Gaussian modulus toward more positive values. Steric and electrostatic lipid-peptide interactions jointly decrease the effective interaction strength in the headgroup region of the host membrane thus suggesting a generic mechanisms of how certain amphipathic peptides are able to induce the formation of saddle curvatures.A series of highly efficient quasi-solid-state dye-sensitized solar cells (DSCs) is prepared by harnessing the binary cation effect and positive effects of the selected performance enhancers of gel-polymer electrolytes. The new electrolyte is composed of polyacrylonitrile polymer, tetra-hexylammonium iodide (Hex4NI) and KI binary salts as well as 4-tertbutylpyridine and 1-butyl-3-methylimidazolium iodide performance enhancers. The charge transport in the series of electrolytes is thermally activated and, accordingly, the temperature dependence of conductivity follows the VTF behavior. The enhancement of conductivity is observed with an increasing mass fraction of KI and decreasing mass fraction of Hex4NI, while the total mass fraction of salts in the electrolyte is kept unchanged. The highest conductivity of 3.74 mS cm-1 at ambient temperature is shown by the sample containing KI only (without Hex4NI) at all the temperatures. The effects of dielectric polarization of the electrolytes are studied by analyzing ficiency of 7.36% is evidently due to the binary cation effect.The aim of this paper is to investigate the effect of eigenfrequency and the actual frequency of the elastic surface for droplet rebound. The elastic surface used in this study is the stationary flexible feather vanes. A fluid-structure interaction (FSI) numerical model is proposed to predict the phenomenon, and later it is validated by an experiment where droplets impact the stationary flexible feather vanes. The effect of mass and stiffness of the surface is analysed. First, a suitable combination of mass and stiffness of the surface will enhance the drop rebound. Second, a small mass system with a higher eigenfrequency will decrease the minimum contact time. Finally, the actual frequencies of the elastic surface, approximately 75 Hz, can accelerate the drop rebound for all cases.Functional organic polymer materials with an ability to change their surface topography in response to external contactless stimuli, like light irradiation, have attracted considerable attention. This work is devoted to the study of contactless control of the surface topography and the formation of the surface features in the amorphousized and liquid crystalline films of two azobenzene-containing polymers. The investigated polymers are side-chain polymethacrylates containing azobenzene chromophores with two lateral methyl substituents in ortho-positions and differing in the length of flexible spacer with six and ten methylene units. Two lateral methyl substituents at the azobenzene chromophore ensure high photoresponses of these polymeric samples in the whole visible spectral range. Irradiation of the polymethacrylate films by focused polarized light of green (532 nm) and red (633 nm) lasers induces a specific photodeformation of the film surface. In the case of the green light formation of circular "craters" with anisotropic borders was found, whereas for the red light highly asymmetric "hills" were observed.