Matthiesenalbright8904
In order to generate coarser multi-domain representations for subsequent classification, the temporal and spatial features are further mapped into comprehensive fused features with a deep feature fusion method. Experimental results show that the classification accuracy of our proposed method is reached to 87.7%, which is at least 5.5% improvement than the state-of-the-art methods. These results elucidate the superiority of the proposed method for MCI classification, indicating its effectiveness in the early identification of brain abnormalities.Energy-resolved computed tomography (ErCT) with a photon counting detector concurrently produces multiple CT images corresponding to different photon energy ranges. It has the potential to generate energy-dependent images with improved contrast-to-noise ratio and sufficient material-specific information. Since the number of detected photons in one energy bin in ErCT is smaller than that in conventional energy-integrating CT (EiCT), ErCT images are inherently more noisy than EiCT images, which leads to increased noise and bias in the subsequent material estimation. In this work, we first deeply analyze the intrinsic tensor properties of two-dimensional (2D) ErCT images acquired in different energy bins and then present a Full-Spectrum-knowledge-aware Tensor analysis and processing (FSTensor) method for ErCT reconstruction to suppress noise-induced artifacts to obtain high-quality ErCT images and high-accuracy material images. The presented method is based on three considerations (1) 2D ErCT images obtained in principal component analysis, tensor-based dictionary learning and low-rank tensor decomposition with spatial-temporal total variation methods.In conventional focused beamforming (CFB), there is a known tradeoff between the active aperture size of the ultrasound transducer array and the resulting image quality. Increasing the size of the active aperture leads to an increase in the image quality of the ultrasound system at the expense of increased system cost. An alternate approach is to get rid of the requirement of having consecutive active receive elements and instead place them in a random order in a larger aperture. This, in turn, creates an undersampled situation where there are only M active elements placed in a larger aperture, which can accommodate N consecutive receive elements (with ). It is possible to formulate and solve the above-mentioned undersampling situation using a compressed sensing (CS) approach. In our previous work, we had proposed Gaussian undersampling strategy for reducing the number of active receive elements. In this work, we introduce a novel framework, namely Gaussian undersampling-based CS framework (GAUCS) with wave atoms as a sparsifying basis for CFB imaging method. The performance of the proposed method is validated using simulation and in vitro phantom data. Without an increase in the active elements, it is found that the proposed GAUCS framework improved the lateral resolution (LR) and image contrast by 27% and 1.5 times, respectively, while using 16 active elements and by 39% and 1.1 times, respectively, while using 32 active elements. Thus, the GAUCS framework can play a significant role in improving the performance, especially, of affordable point-of-care ultrasound systems.On Friday, 20 December 2019, after three and a half years of discussion the Parliament of the United Kingdom (UK) voted decisively that this country should leave the European Union (EU). For many of us this was a sad day. However, this political decision has been made and intensive negotiations will now take place between the UK and the EU's negotiating teams to agree the details for the UK's future relationship with the EU. It is still far from clear exactly what the consequences of the resulting deal will be for both parties. A number of previous articles and editorials have speculated on the possible consequences for health and oral health in the UK. Key areas include workforce, research and regulations for medicines and medical and dental equipment. This editorial will consider the implications for the UK's Oral healthcare workforce. Copyright© 2020 Dennis Barber Ltd.l-2,4-diaminobutyric acid (DABA) aminotransferases can catalyze the formation of amines at the distal ω-position of substrates, and is the intial and rate-limiting enzyme in the biosynthesis pathway of the cytoprotecting molecule (S)-2-methyl-1,4,5,6-tetrahydro-4-pyrimidine carboxylic acid (ectoine). NSC 34521 Although there is an industrial interest in the biosynthesis of ectoine, the DABA aminotransferases remain poorly characterized. Herein, we present the crystal structure of EctB (2.45 Å), a DABA aminotransferase from Chromohalobacter salexigens DSM 3043, a well-studied organism with respect to osmoadaptation by ectoine biosynthesis. We investigate the enzyme's oligomeric state to show that EctB from C. salexigens is a tetramer of two functional dimers, and suggest conserved recognition sites for dimerization that also includes the characteristic gating loop that helps shape the active site of the neighboring monomer. Although ω-transaminases are known to have two binding pockets to accommodate for their dual substrate specificity, we herein provide the first description of two binding pockets in the active site that may account for the catalytic character of DABA aminotransferases. Furthermore, our biochemical data reveal that the EctB enzyme from C. salexigens is a thermostable, halotolerant enzyme with a broad pH tolerance which may be linked to its tetrameric state. Put together, this study creates a solid foundation for a deeper structural understanding of DABA aminotransferases and opening up for future downstream studies of EctB's catalytic character and its redesign as a better catalyst for ectoine biosynthesis. In summary, we believe that the EctB enzyme from C. salexigens can serve as a benchmark enzyme for characterization of DABA aminotransferases. DATABASE Structural data are available in PDB database under the accession number 6RL5. © 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.