Mathiassendehn4152

Z Iurium Wiki

The specific activities of natural (210Pb, 226Ra, and 232Th) and artificial (137Cs, 239,240Pu, and 241Am) radionuclides in the sediments of two North Caucasus lakes were determined. The two lakes, Lake Khuko and Lake Donguz-Orun, differ in their sedimentation conditions. Based on the use of unsupported 210Pbex and both Chernobyl-derived and bomb-derived 137Cs as chronological markers, it was established that the sedimentation rates in Lake Khuko over the past 55-60 y did not exceed 0.017 cm y-1. Sedimentation rates in Lake Donguz-Orun were found to be more than an order of magnitude higher. In the latter case, the sedimentation rates for the period from 1986 to the present were over 1.5 times higher than they were for the period 1963-1986. The differences in sedimentation rates were due to differences in the rates of denudation of their respective catchment areas. The specific activities of artificial radionuclides (137Cs, 2600 Bq kg-1; 239,240Pu, 162 Bq kg-1; and 241Am, 36 Bq kg-1) and their ratios in the sediments of Lake Khuko show that their deposition was mainly due to global stratospheric fallout of technogenic radionuclides associated with nuclear bomb testing during 1954-1963-rather than fallout from the Chernobyl accident. Several factors, including the mode of precipitation, features of the surface runoff, and location of Lake Khuko, were responsible for the accumulation of artificial radionuclides. PM2.5 pollution is caused by multiple factors and determining how these factors affect PM2.5 pollution is important for haze control. In this study, we modified the geographically weighted regression (GWR) model and investigated the relationships between PM2.5 and its influencing factors. Experiments covering 368 cities and 9 urban agglomerations were conducted in China in 2015 and more than 20 factors were considered. Veliparib chemical structure The modified GWR coefficients (MGCs) were calculated for six variables, including two emission factors (SO2 and NO2 concentrations), two meteorological factors (relative humidity and lifted index), and two topographical factors (woodland percentage and elevation). Then the spatial distribution of MGCs was analyzed at city, cluster, and region scales. Results showed that the relationships between PM2.5 and the different factors varied with location. SO2 emission positively affected PM2.5, and the impact was the strongest in the Beijing-Tianjin-Hebei (BTH) region. The impact of NO2 was generally smaller than that of SO2 and could be important in coastal areas. The impact of meteorological factors on PM2.5 was complicated in terms of spatial variations, with relative humidity and lifted index exerting a strong positive impact on PM2.5 in Pearl River Delta and Central China, respectively. Woodland percentage mainly influenced PM2.5 in regions of or near deserts, and elevation was important in BTH and Sichuan. The findings of this study can improve our understanding of haze formation and provide useful information for policy-making. Wastewater treatment plants (WWTPs) provide optimal conditions for the maintenance and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In this work we describe the occurrence of antibiotic resistant faecal coliforms and their mechanisms of antibiotic resistance in the effluent of two urban WWTPs in Ireland. This information is critical to identifying the role of WWTPs in the dissemination of ARB and ARGs into the environment. Effluent samples were collected from two WWTPs in Spring and Autumn of 2015 and 2016. The bacterial susceptibility patterns to 13 antibiotics were determined. The phenotypic tests were carried out to identify AmpC or extended-spectrum β-lactamase (ESBL) producers. The presence of ESBL genes were detected by PCR. Plasmids carrying ESBL genes were transformed into Escherichia coli DH5α recipient and underwent plasmid replicon typing to identify incompatibility groups. More than 90% of isolated faecal coliforms were resistant to amoxicillin and ampicillin, followed by tetracycline (up to 39.82%), ciprofloxacin (up to 31.42%) and trimethoprim (up to 37.61%). Faecal coliforms resistant to colistin (up to 31.62%) and imipenem (up to 15.93%) were detected in all effluent samples. Up to 53.98% of isolated faecal coliforms expressed a multi-drug resistance (MRD) phenotype. AmpC production was confirmed in 5.22% of isolates. The ESBL genes were confirmed for 11.84% of isolates (9.2% of isolates carried blaTEM, 1.4% blaSHV-12, 0.2% blaCTX-M-1 and 1% blaCTX-M-15). Plasmids extracted from 52 ESBL isolates were successfully transformed into recipient E. coli. The detected plasmid incompatibility groups included the IncF group, IncI1, IncHI1/2 and IncA/C. These results provide evidence that treated wastewater is polluted with ARB and MDR faecal coliforms and are sources of ESBL-producing, carbapenem and colistin resistant Enterobacteriaceae. Communities in low-income and middle-income countries (LMIC) are disproportionally affected by industrial pollution compared to more developed nations. This study evaluates the dispersal and associated health risk of contaminant-laden soil and dust at a copper (Cu) smelter in Tsumeb, Namibia. It is Africa's only smelter capable of treating complex Cu ores that contain high arsenic (As) contents ( less then 1%). The analyses focused on the primary trace elements associated with ore processing at the smelter As, Cu, and lead (Pb). Portable X-Ray fluorescence spectrometry (pXRF) of trace elements in soils (n = 83) and surface dust wipes (n = 80) showed that elemental contamination was spatially associated with proximity to smelter operations. Soil concentrations were below US EPA soil guidelines. Dust wipe values were elevated relative to sites distal from the facility and similar to those at other international smelter locations (As = 1012 μg/m2 (95% CI 687-1337); Cu = 1838 μg/m2 (95% CI 1191-2485); Pb = 1624 μg/m2 (95% CI 862-2385)). Source apportionment for Pb contamination was assessed using Pb isotopic compositions (PbIC) of dust wipes (n = 22). These data revealed that the PbIC of 73% (n = 16/22) of these wipes corresponded to the PbIC of smelter slag and tailings, indicating contribution from industrial emissions to ongoing exposure risk. Modeling of carcinogenic risk showed that dust ingestion was the most important pathway, followed by inhalation, for both adults and children. Dermal contact to trace elements in dust was also determined to pose a carcinogenic risk for children, but not adults. Consequently, contemporary smelter operations remain an ongoing health risk to the surrounding community, in spite of recent efforts to improve emissions from the operations.

Autoři článku: Mathiassendehn4152 (Wang Kloster)