Mathiasencalhoun3580
The Lin's concordance coefficient between estimated and measured GFR was low.
GFR measured by 99mTc-DTPA radionuclide imaging has a low correlation and poor concordance with estimations using CBE.
GFR measured by 99mTc-DTPA radionuclide imaging has a low correlation and poor concordance with estimations using CBE.
The discovery of the phospholipase A2 receptor antigen and its highly specific autoantibody (anti-PLA2R Ab) was useful for the diagnosis and follow-up of patients with membranous nephropathy (MN). Thus, some international guidelines recommend not performing renal biopsy in patients with positive serum anti-PLA2R Ab.
To evaluate the prevalence of anti-PLA2R Ab in serum and renal tissue samples from Chilean patients with primary MN.
Twenty-eight patients aged 50 ± 14 years (20 males) with biopsy-proven primary MN plus a negative workup for secondary causes were included. Measurements of serum and renal histologic anti-PLA2R Ab were performed. The relationship between the findings of serum and tissue anti-PLA2R Ab was evaluated.
Fifteen patients (54 %) had anti-PLA2R Ab presence in serum and 19 patients (68%) had positive anti-PLA2R Ab in the renal biopsy. All patients with positive serum anti-PLA2R Ab had positive antibodies on immunohistochemistry.
Serum anti-PLA2R Ab is potentially useful in the diagnosis of patients with suspected primary MN in Chilean population.
Serum anti-PLA2R Ab is potentially useful in the diagnosis of patients with suspected primary MN in Chilean population.One of the great challenges of bottom-up synthetic biology is to recreate the cellular geometry and surface functionality required for biological reactions. Of particular interest are lipid membrane interfaces where many protein functions take place. However, cellular 3D geometries are often complex, and custom-shaping stable lipid membranes on relevant spatial scales in the micrometer range has been hard to accomplish reproducibly. Here, we use two-photon direct laser writing to 3D print microenvironments with length scales relevant to cellular processes and reactions. We formed lipid bilayers on the surfaces of these printed structures, and we evaluated multiple combinatorial scenarios, where physiologically relevant membrane compositions were generated on several different polymer surfaces. Functional dynamic protein systems were reconstituted in vitro and their self-organization was observed in response to the 3D geometry. This method proves very useful to template biological membranes with an additional spatial dimension, and thus allows a better understanding of protein function in relation to the complex morphology of cells and organelles.An efficient synthetic methodology to access biologically important and synthetically useful α-quaternary cysteine derivatives via asymmetric catalytic α-allylation of readily available 2-thiazoline-4-carboxylates was successfully developed through a synergistic Cu/Pd catalytic system. A wide array of α-quaternary cysteine derivatives were obtained in moderate to high yields with good to excellent enantioselectivities (45-98% yields and 69->99% ee). Folinic chemical structure Gram-scale asymmetric allylation was performed to obtain high yields maintaining the enantioselectivity. Moreover, some synthetic transformations to access chiral spirocyclic compounds proceeded smoothly, which exhibited the important utility of this methodology.Correction for 'Water binding stabilizes stacked conformations of ferrocene containing sheet-like aromatic oligoamides' by Ya-Zhou Liu et al., Org. Biomol. Chem., 2021, DOI 10.1039/d1ob00580d.The subspecialty of cardio-oncology aims to reduce cardiovascular morbidity and mortality in patients with cancer or following cancer treatment. Cancer therapy can lead to a variety of cardiovascular complications, including left ventricular systolic dysfunction, pericardial disease, and valvular heart disease. Echocardiography is a key diagnostic imaging tool in the diagnosis and surveillance for many of these complications. The baseline assessment and subsequent surveillance of patients undergoing treatment with anthracyclines and/or human epidermal growth factor (EGF) receptor (HER) 2-positive targeted treatment (e.g. trastuzumab and pertuzumab) form a significant proportion of cardio-oncology patients undergoing echocardiography. This guideline from the British Society of Echocardiography and British Cardio-Oncology Society outlines a protocol for baseline and surveillance echocardiography of patients undergoing treatment with anthracyclines and/or trastuzumab. The methodology for acquisition of images and the advantages and disadvantages of techniques are discussed. Echocardiographic definitions for considering cancer therapeutics-related cardiac dysfunction are also presented.Sensitive, reliable and cost-effective detection of pathogens has wide ranging applications in clinical diagnostics and therapeutics, water and food safety, environmental monitoring, biosafety and epidemiology. Nucleic acid amplification tests (NAATs) such as PCR and isothermal amplification methods provide excellent analytical performance and significantly faster turnaround times than conventional culture-based methods. However, the inherent cost and complexity of NAATs limit their application in resource-limited settings and the developing world. To help address this urgent need, we have developed a sensitive method for nucleic acid analysis based on padlock probe rolling circle amplification (PLRCA), nuclease protection (NP) and lateral flow detection (LFA), referred to as PLAN-LFA, that can be used in resource-limited settings. The assay involves solution-phase hybridization of a padlock probe to target, sequence-specific ligation of the probe to form a circular template that undergoes isothermal rolling e without any sample pretreatment steps.We present a microfluidic platform that enables the formation of bespoke asymmetric droplet interface bilayers (DIBs) as artificial cell models from naturally-derived lipids. We use them to perform pharmacokinetic assays to quantify how lipid asymmetry affects the permeability of the chemotherapy drug doxorubicin. Previous attempts to model bilayer asymmetry with DIBs have relied on the use of synthetic lipids to achieve asymmetry. Use of natural lipids serves to increase the biomimetic nature of these artificial cells, showcasing the next step towards forming a true artificial cell membrane in vitro. Here we use our microfluidic platform to form biomimetic, asymmetric and symmetric DIBs, with their asymmetry quantified through their life-mimicking degree of curvature. We subsequently examine permeability of these membranes to doxorubicin, and reveal measurable differences in its pharmacokinetics induced by membrane asymmetry, highlighting another factor that potentially contributes to chemoresistance in some forms of cancer.The design and preparation of electrode materials with excellent performance is particularly important due to the current global scarcity of energy supplies, especially those using sustainable and renewable materials. In this work, it is first proposed to apply iron silicate (FeSi), which is synthesized using environmentally friendly biomass as a raw material, as an electrode material for supercapacitors (SCs). FeSi is derived from the calcination of reed leaves (RLs) in combination with a hydrothermal method, and spherical FeSi retains the porosity of the RL precursors and shows remarkable electrochemical performance. The specific capacitance of FeSi as a SC electrode can reach 575 F g-1 at 0.5 A g-1 in the voltage window from -1 to -0.5 V. Simultaneously, the FeSi electrode exhibits favorable cycling stability with 76% capacitance retention after 10 000 cycles and outstanding electrical conductivity. This finding provides a novel method of preparing a kind of untapped electrode material, porous FeSi nanoparticles derived from RLs, and the resulting FeSi material shows enormous potential for energy storage via high-performance SCs.A series of BODIPY dyes were synthesized, that were at the 3, or 3 and 5 positions, substituted by photochemically reactive quinone methide (QM) precursor moieties. Fluorescence properties of the molecules were investigated and we demonstrated that the molecules undergo wavelength dependent photochemistry. Photodeamination to deliver QMs takes place only upon excitation to higher excited singlet states, showing unusual anti-Kasha photochemical reactivity. The findings were corroborated by TD-DFT computations. Laser flash photolysis experiments could not reveal QMs due to the low efficiency of their formation, but enabled the detection of phenoxyl radicals. The applicability of the molecules for the fluorescent labeling of bovine serum albumin as a model protein upon photoexcitation at 350 nm was demonstrated.
Because of the interplay between mitochondrial respiration and cellular metabolism, the simultaneous monitoring of both cellular processes provides important insights for the understanding of biological processes. NMR flow systems provide a unique window into the metabolome of cultured cells. Simplified bioreactor construction based on commercially available flow systems increase the practicability and reproducibility of bioreactor studies using standard NMR spectrometers. We therefore aim at establishing a reproducible NMR bioreactor system for metabolic
H-NMR investigations of small molecules and concurrent oxygenation determination by
F-NMR, with in depth description and validation by accompanying measures.
We demonstrate a detailed and standardized workflow for the preparation and transfer of collagen based 3D cell culture of high cell density for perfused investigation in a 5 mm NMR tube. Self-constructed gas mixing station enables 5% CO
atmosphere for physiological pH in carbon based medium an major mitochondrial fuel pathways and were able to simultaneously measure cellular oxygen consumption.Highly conductive, conformable and gel-free electrodes are desirable in human electrophysiology. Besides, intimately coupling with human skin, wearable strain sensors can detect numerous physiological signals, such as wrist pulse and breath. In this study, a multilayer graphene nanosheet film (MGNF) with high conductivity was prepared by the Marangoni self-assembly for using in tattoo dry electrodes (TDEs) and in a graphene tattoo strain sensor (GTSS). Compared to commercial Ag/AgCl gel electrodes, TDEs have lower skin-electrode contact impedance and could detect human electrocardiogram for 24-hour wearing more accurately as well as electromyogram. Through designing a slim serpentine ribbon structure, a resistance-type GTSS, without deterioration even after 2000 cycles, is well demonstrated for human wrist pulse and breath sensing. With the advantages of high conductivity and conformability, MGNF provides support to fabricate low-cost, customizable, and high-performance electronic tattoos for human electrophysiology and strain sensing.N-linked glycosylation is a ubiquitous protein modification that is capable of modulating protein structure, function and interactions. Many proteins in the brain associated with the synapse and important for synaptic transmission are highly glycosylated and their glycosylation could be important for learning and memory related molecular processes and synaptic plasticity. In the present study, we extend the knowledge of the synaptic glycome and glycoproteome by performing glycan- and intact glycopeptide-focused analyses of isolated rat nerve terminals (synaptosomes) by LC-MS/MS. Overall, glycomics identified a total of 41 N-glycans in isolated synaptosomes. Sialylated N-glycans represented only 7% of the total abundance of the rat synaptosome N-glycome with oligomannose, neutral hybrid and complex type N-glycans being the most abundant structures. Using detergent extraction of the active zone proteins from the synaptosomes revealed a change in the active zone glycan abundance in comparison with the rest of the synaptosome glycan content.