Martinezabrahamsen0666

Z Iurium Wiki

Photoactive MOF-based delivery systems are highly attractive for photodynamic therapy (PDT), but the fundamental interplay among structural parameters and photoactivity and biological properties of these MOFs remains unclear. Liproxstatin-1 Herein, porphyrinic MOF isomers (TCPP-MOFs), constructing using the same building blocks into distinct topologies, have been selected as ideal models to understand this problem. Both the intramolecular distances and molecular polarization within TCPP-MOFs isomers collectively contribute to the photoactivity of generating reactive oxygen species. Remarkably, the morphology-determined endocytic pathways and cytotoxicity, as well as good biocompatibility have been confirmed for TCPP-MOF isomers without any chemical modification for the first time. Besides the topology-dependent photoactive regulation, this work also provides in-depth insights into the biological effect from the MOF nanoparticles with controllable structural factors, benefiting further in vivo applications and clinical transformation.Hydrogels are widely used in fields such as drug delivery, tissue regeneration, soft robotics and flexible smart electronic devices, yet their application is often limited by unsatisfactory mechanical behaviors. Among the various improvement strategies, double network (DN) hydrogels from synthetic polymers demonstrated impressive mechanical properties, while those from natural polymers were usually inferior. Here, a novel DN hydrogel composed fully of natural polymers exhibiting remarkable mechanical properties and conductivity is prepared by simply soaking a virgin gellan gum/gelatin composite hydrogel in a mixed solution of Na2SO4 and (NH4)2SO4. This hydrogel exhibits a tunable Young's modulus (0.08 to 42.6 MPa), good fracture stress (0.05 to 7.5 MPa), good fracture stretch (1.4 to 7.1), high fracture toughness (up to 27.7 kJ m-2), and high ionic conductivity (up to 11.4 S m-1 at f = 1 kHz). The improvement in the mechanical properties of the DN gel is attributed to the chain-entanglement crosslinking points introduced by SO42- in the gelatin network and the electrostatic interaction crosslinking points introduced by Na+ in the gellan gum network. The high ionic conductivity of the DN gel is attributed to the infiltration of the DN gel in a salt solution of high concentration. The developed gellan gum/gelatin DN hydrogel has shown a new pathway towards strengthening natural-polymer-based DN hydrogels and towards potential applications in biomedical engineering and flexible electronic devices.Superparamagnetic iron oxide nanoparticles with high magnetization strength and good biological safety have been widely used as magnetic resonance imaging (MRI) contrast agents for tumors. However, the accuracy of tumor diagnosis is still low due to the lack of tumor targeting and the interference signals from normal tissues. Endogenous substances in tumor (such as high levels of GSH and pH) stimuli-responsive contrast agents could offer higher sensitivity for tumor diagnosis. Herein, based on the characteristic of overexpression of GSH in tumors, we propose an ultra-small Fe3O4 assembly as an endogenous GSH responsive MRI contrast agent. The ultra-small superparamagnetic Fe3O4 are bonded to the crosslinker cystamine to synthesize Fe3O4 nanoclusters, which exhibit a T2 imaging effect. When the contrast agent reaches the tumor tissue, the disulfide bond in cystamine is induced by GSH to break, the Fe3O4 nanoclusters are disassembled into ultra-small Fe3O4 nanoparticles, and the relaxation signal changes from T2 to T1, which is helpful for accurate diagnosis of tumors. In vivo experiments have shown that Fe3O4 nanoclusters can rapidly respond to overexpressed GSH in tumor sites for T2/T1 switchable imaging. This work not only designed an endogenous GSH responsive platform through simple synthesis methods, but also improved the accuracy of tumor diagnosis through the transformation of T2/T1 MRI signals.Skin necrosis is the most serious complication of flap plastic surgery, which means the failure of the operation. link2 Systemic administration rarely benefits the local area and can lead to side effects, while topical administration has poor permeability due to the skin barrier function. Currently, few of these common medical interventions can totally respond to the blood supply of the skin after surgery. Herein, a soluble microneedle (MN) patch made of hyaluronic acid was used to target the ischemic area in a painless and precise manner for transdermal drug delivery. Based on the important role of nitric oxide (NO) in angiogenesis, the thermosensitive NO donor (BNN6) and gold nanorods (GNRs) acting as photothermal agents were introduced into the microneedles (MNs). The hyperthermia induced by GNRs under near infrared (NIR, 808 nm) irradiation could enhance the penetration of drugs and facilitate NO release from BNN6. A series of corresponding experiments proved that the system played a significant promotion role in vascular regeneration, providing a painless, precise and NO-assisted treatment method for the ischemic perforator flaps.We identify factors leading to aggregation of bacteria in the presence of a surfactant using absorbance and microscopy. Two marine bacteria, Marinobacter hydrocarbonoclasticus SP17 and Halomonas titanicae Bead 10BA, formed aggregates of a broad size distribution in synthetic sea water in the presence of an anionic surfactant, dioctyl sodium sulfosuccinate (DOSS). Both DOSS at high concentrations and calcium ions were necessary for aggregate formation, but DOSS micelles were not required for aggregation. Addition of proteinase K but not DNase1 eliminated aggregate formation over two hours. Finally, swimming motility also enhanced aggregate formation.Electroconductive biocompatible hydrogels with tunable properties have extensively been taken into account in tissue engineering applications due to their potential to provide suitable microenvironmental responses for the cells. In the present study, novel electroconductive hydrogels are designed and synthesized by reacting oxidized alginate with polypyrrole-grafted gelatin copolymer (PPy-g-gelatin) via formation of a Schiff-base linkage. The influence of the composition and the concentration of the components on the compressive modulus and functional performance of the hydrogels is investigated. The conductivity of the hydrogels measured by a two-probe method increased by increasing the level of polypyrrole-grafted gelatin, and a conductivity of 0.7753 S m-1 was exhibited by the hydrogel composed of 8% w/v polypyrrole-grafted gelatin (oxidized alginategelatinpolypyrrole-grafted gelatin; 30  35  35% v/v). The hydrogel compressive modulus was shown to be enhanced by increasing the total concentration of hydrogel. The characteristic features of the prepared hydrogels, including swelling ratio, volume fraction, cross-link density, and mesh size, are also studied and analyzed. Besides, the conductive hydrogels have a smaller mesh size and higher cross-link density than the non-conductive hydrogels. However, the hydrogels with high cross-link density, small mesh size, and large pore size presented higher electroconductivity as a result of easier movement of the ions throughout the hydrogel. These conductive hydrogels exhibited electrical conductivity and biodegradability with cell viability, implying potential as scaffolds for tissue engineering.Nature's material systems during evolution have developed the ability to respond and adapt to environmental stimuli through the generation of complex structures capable of varying their functions across direction, distances and time. 3D printing technologies can recapitulate structural motifs present in natural materials, and efforts are currently being made on the technological side to improve printing resolution, shape fidelity, and printing speed. However, an intrinsic limitation of this technology is that printed objects are static and thus inadequate to dynamically reshape when subjected to external stimuli. In recent years, this issue has been addressed with the design and precise deployment of smart materials that can undergo a programmed morphing in response to a stimulus. The term 4D printing was coined to indicate the combined use of additive manufacturing, smart materials, and careful design of appropriate geometries. In this review, we report the recent progress in the design and development of smart materials that are actuated by different stimuli and their exploitation within additive manufacturing to produce biomimetic structures with important repercussions in different but interrelated biomedical areas.Alzheimer's disease (AD) is an incurable neurodegenerative disease. Repairing damaged nerves and promoting nerve regeneration are key ways to relieve AD symptoms. However, due to the lack of effective strategies to deliver nerve growth factor (NGF) to the brain, achieving neuron regeneration is a major challenge for curing AD. Herein, a ROS-responsive ruthenium nanoplatform (R@NGF-Se-Se-Ru) drug delivery system for AD management by promoting neuron regeneration and Aβ clearance was investigated. Under near-infrared (NIR) irradiation, nanoclusters have good photothermal properties, which can effectively inhibit the aggregation of Aβ and disaggregate Aβ fibrils. Interestingly, the diselenide bond in the nanoclusters is broken, and the nanoclusters are degraded into small ruthenium nanoparticles in the high reactive oxygen species (ROS) environment of the diseased area. Besides, NGF can promote neuronal regeneration and repair damaged nerves. Furthermore, R@NGF-Se-Se-Ru efficiently crosses the blood-brain barrier (BBB) owing to the covalently grafted target peptides of RVG (R). In vivo studies demonstrate that R@NGF-Se-Se-Ru nanoclusters decrease Aβ deposits, inhibit Aβ-induced cytotoxicity, and promote neurite outgrowth. The study confirms that promoting both Aβ clearance and neuron regeneration is an important therapeutic target for anti-AD drugs and provides a novel insight for AD therapy.Fluorescent bioimaging is an excellent tool in cellular biology, and it will be a powerful technique in modern medicine as a noninvasive imaging technology where tumoral and normal cells must be distinguished. One of the differences between normal and cancer cells is the intracellular pH. Therefore, the design and synthesis of pH-responsive fluorescent materials are required. Organotin Schiff bases showed halofluorochromic behavior in solution. Microwave-assisted synthesis showed better reaction times and chemical yields compared with conventional heating. All compounds were fully characterized by spectroscopic and spectrometric techniques. The halofluorochromism study showed that some molecules in acidic media have the maximum luminescence intensity due to protonation. link3 All the fluorescent tin complexes showed cell staining on hepatocyte and MCF-7 cells by confocal microscopy. The theoretical study has enabled us to rationalize the optical properties and the halofluorochromism for compounds 1 and 2 synthesized in this work. Our results showed that the emission decrease, in the acid and basic media for compounds 1 and 2, respectively, is caused by intramolecular charge transfer (ICT) deactivation.

Autoři článku: Martinezabrahamsen0666 (Haahr Fischer)