Markwallace5449

Z Iurium Wiki

The operation and maintenance of buildings has seen several advances in recent years. Multiple information and communication technology (ICT) solutions have been introduced to better manage building maintenance. However, maintenance practices in buildings remain less efficient and lead to significant energy waste. In this paper, a predictive maintenance framework based on machine learning techniques is proposed. This framework aims to provide guidelines to implement predictive maintenance for building installations. The framework is organised into five steps data collection, data processing, model development, fault notification and model improvement. A sport facility was selected as a case study in this work to demonstrate the framework. Data were collected from different heating ventilation and air conditioning (HVAC) installations using Internet of Things (IoT) devices and a building automation system (BAS). Then, a deep learning model was used to predict failures. The case study showed the potential of this framework to predict failures. However, multiple obstacles and barriers were observed related to data availability and feedback collection. The overall results of this paper can help to provide guidelines for scientists and practitioners to implement predictive maintenance approaches in buildings.Mood disorders are chronic, recurrent diseases characterized by changes in mood and emotions. The most common are major depressive disorder (MDD) and bipolar disorder (BD). Molecular biology studies have indicated an involvement of the immune system in the pathogenesis of mood disorders, and showed their correlation with altered levels of inflammatory markers and energy metabolism. Previous reports, including meta-analyses, also suggested the role of microglia activation in the M1 polarized macrophages, reflecting the pro-inflammatory phenotype. Lithium is an effective mood stabilizer used to treat both manic and depressive episodes in bipolar disorder, and as an augmentation of the antidepressant treatment of depression with a multidimensional mode of action. This review aims to summarize the molecular studies regarding inflammation, microglia activation and energy metabolism changes in mood disorders. We also aimed to outline the impact of lithium on these changes and discuss its immunomodulatory effect in mood disorders.There is a growing recognition that both the gut microbiome and the immune system are involved in a number of psychiatric illnesses, including eating disorders. This should come as no surprise, given the important roles of diet composition, eating patterns, and daily caloric intake in modulating both biological systems. Here, we review the evidence that alterations in the gut microbiome and immune system may serve not only to maintain and exacerbate dysregulated eating behavior, characterized by caloric restriction in anorexia nervosa and binge eating in bulimia nervosa and binge eating disorder, but may also serve as biomarkers of increased risk for developing an eating disorder. We focus on studies examining gut dysbiosis, peripheral inflammation, and neuroinflammation in each of these eating disorders, and explore the available data from preclinical rodent models of anorexia and binge-like eating that may be useful in providing a better understanding of the biological mechanisms underlying eating disorders. Such knowledge is critical to developing novel, highly effective treatments for these often intractable and unremitting eating disorders.Chile is a mining country, where waste mining is frequently found in the vicinity of inhabited areas. To explore the association between metal exposure and alterations in glucose metabolism, inflammatory status, and oxidative stress in individuals with chronic exposure to metals, a cross-sectional study was performed with 25 volunteers, between 45-65 years old. Inductive coupled plasma mass spectrometry (ICP-MS) was used to measure urinary levels of total arsenic (As) and its metabolites, cooper, nickel, chromium, and lead. Lipid profile, glucose, and insulin were measured in blood, as well as inflammation (interleukin-6, IL-6) and oxidative stress (8-hydroxy-2'deoxyguanosine, 8-OHdG) markers. Increased levels of Low-density lipoprotein, high-density lipoproteins, cholesterol and 8-OHdG, and the index for homeostasis model assessment-insulin resistance (HOMA-IR) were observed in 72%, 60%, and 56% of the volunteers, respectively. Blood-glucose levels were correlated with dimethylarsinic acid (DMA) (R2 = 0.47, p = 0.019), inorganic As (Asi) (R2 = 0.40, p = 0.012), and Ni (R2 = 0.56; p = 0.044). The models with these compounds explained 72% of the glycemia variability (βDMA = -6.47; βAsi = 6.68; βNi = 6.87). Ni showed a significantly influence on IL-6 variability (β = 0.85 R2 = 0.36). Changes in glycemia could be related to exposure to low levels of Asi and Ni, representing risk factors for metabolic diseases. G150 mw Body mass index would confuse the relation between IL-6 and Ni levels, probably due to known chronic inflammation present in obese people.Leucokinins (LKs) constitute a neuropeptide family first discovered in a cockroach and later identified in numerous insects and several other invertebrates. The LK receptors are only distantly related to other known receptors. Among insects, there are many examples of species where genes encoding LKs and their receptors are absent. Furthermore, genomics has revealed that LK signaling is lacking in several of the invertebrate phyla and in vertebrates. In insects, the number and complexity of LK-expressing neurons vary, from the simple pattern in the Drosophila larva where the entire CNS has 20 neurons of 3 main types, to cockroaches with about 250 neurons of many different types. Common to all studied insects is the presence or 1-3 pairs of LK-expressing neurosecretory cells in each abdominal neuromere of the ventral nerve cord, that, at least in some insects, regulate secretion in Malpighian tubules. This review summarizes the diverse functional roles of LK signaling in insects, as well as other arthropods and mollusks. These functions include regulation of ion and water homeostasis, feeding, sleep-metabolism interactions, state-dependent memory formation, as well as modulation of gustatory sensitivity and nociception. Other functions are implied by the neuronal distribution of LK, but remain to be investigated.

Autoři článku: Markwallace5449 (Purcell Jantzen)