Markussenhussein2944
Understanding immune responses toward viral infection will be useful for potential therapeutic intervention and offer insights into the design of prophylactic vaccines. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 pandemic. To understand the complex immune responses toward SARS-CoV-2 infection, here we developed a method to express and purify the recombinant and engineered viral receptor-binding domain (RBD) to more than 95% purity. We could encapsulate RNA molecules into the interior of a virion-sized liposome. We conjugated the purified RBD proteins onto the surface of the liposome in an orientation-specific manner with defined spatial densities. ESI-09 Both the encapsulation of RNAs and the chemical conjugation of the RBD protein on liposome surfaces were stable under physiologically relevant conditions. In contrast to soluble RBD proteins, a single injection of RBD-conjugated liposomes alone, in the absence of any other adjuvants, elicited RBD-specific B cell responses in BALB/c mice, and the resulting animal sera could potently neutralize HIV-1 pseudovirions that displayed the SARS-CoV-2 spike proteins. These results validate these supramolecular structures as a novel and effective tool to mimic the structure of enveloped viruses, the use of which will allow systematic dissection of the complex B cell responses to SARS-CoV-2 infection.Mitochondria play an essential role in maintaining cellular metabolic homeostasis. However, its dysfunction will cause different pathophysiological consequences. A specific mechanism of action has been developed by cells to adapt to changes in physiological conditions or in response to different stimuli, by meditating mitochondrial number, structure, and energy metabolism. Whole grains are considered healthier than refined grains for their higher amounts of bioactive components, with proven multiple health benefits. The modulation of an appropriate mitochondrial function contributes to the bioactive-component-based health improvements. Thus, this review aims to represent current studies that identify the impact of natural bioactive components in whole grains against metabolic disorders by modulating mitochondrial biogenesis and energy metabolism. It seems most attractive to aim nutritional intervention at the prevention or treatment of metabolic abnormalities and hence to target dietary management at improvement of mitochondrial function.In this work, a simple and rapid synthesis method was developed to prepare silver nanoplates (AgNPLs) with a high aspect ratio. A microwave heating process with a high heating rate and uniform heating was used to promote the silver reduction reaction. Silver nitrate (AgNO3) was used as the precursor of AgNPLs, and N,N-dimethylformamide (DMF) played the role of a solvent and reducing agent. Poly(vinylpyrrolidone) (PVP) with a molecular weight of 29,000 and a PVP/AgNO3 ratio of 10 were used to control the shape of synthesized AgNPLs. By adjusting the optimal microwave heating parameters, temperature ramping rate, reaction time, and reaction temperature, triangular AgNPLs with high aspect ratios could be produced. The synthesized AgNPLs had an edge length up to 700 nm and a thickness of 35 nm with aspect ratios up to 20. The AgNPLs were also used to produce conductive patterns via pen writing with a conductivity of 2 × 106 S/m to demonstrate the feasibility of applying the synthesized nanomaterials for electronic applications.Applying in situ transmission electron microscopy, the phase instability in potassium tungsten bronze (KxWO3, 0.18 less then x less then 0.57) induced by heating was investigated. The atomistic phase transition pathway of monoclinic K0.20WO3 → hexagonal KmWO3 (0.18 less then m less then 0.20) → cubic WO3 induced by cationic defects (K and W vacancies) was directly revealed. Unexpectedly, a K+-rich tetragonal KnWO3 (0.40 less then n less then 0.57) phase would nucleate as well, which may result from the blockage of K+ diffusion at the grain boundaries. Our results point out the critical role of the cationic defects in mediating the crystal structures in KxWO3, which provide reference to rational structural design for extensive high-temperature applications.Albeit frequently being overlooked, MS2 spectrum variation against collision energy (CE) implies auxiliary structural clues for m/z values. Online energy-resolved MS (ER-MS) provides the opportunity to acquire the trajectory of ion intensity against CE for any fragment ion of interest, thus exactly offering the desired momentum to empower the conventional MS2 spectrum at a certain CE forward to a full-CE ramp MS2 spectrum (FCER-MS2). Efforts were made here to construct an FCER-MS2 spectrum and to evaluate its potential toward structural analysis. Flavonoids were employed as a proof of concept. MS2 spectra of 76 compounds were recorded by LC-Q-Exactive-MS, and online ER-MS was subsequently programmed using LC-Qtrap-MS to build a breakdown graph for each obvious fragment ion. After defining the greatest value amongst all regressive apices as 100%, the normalized breakdown graphs comprised an FCER-MS2 spectrum for each compound. The FCER-MS2 spectrum contained the MS2 spectrum at any CE as well as optimal CE (OCE) and maximal relative ion intensity (RIImax) of each fragment ion. Except the pronounced isomeric discrimination potential, either OCE or RIImax reflected certain structural properties, such as aglycone, glycosidic bond, and hydroxy, methoxy, and glycosyl substituents. These rules were subsequently applied for flavonoid-focused characterization of a famous herbal medicine, namely Scutellariae Radix, and high-level structural annotation was accomplished for 75 flavonoids. Above all, the FCER-MS2 spectrum includes m/z, OCEs, and RIImax features, thus facilitating confidence-advanced structural analysis.The immune response plays an important role in biomaterial-mediated osteogenesis. Nanomaterials may influence immune responses and thereby alter bone regeneration. Mesoporous silica nanoparticles (MSNs) have received much attention for drug delivery and bone regeneration. Recently, immunomodulatory effects of MSNs on osteogenesis have been reported. In this Review, we summarize the osteoimmunomodulation of MSNs, including the effects of MSN characteristics on immune cells and osteogenesis. Impacts of MSNs on immune cells vary according to nanoparticle properties, including surface topography and charge, particle size, and ion release. MSNs with suitable doses can inhibit inflammation and create an immune microenvironment beneficial for bone regeneration by activating immune cells and stimulating cytokine release. Further work is needed to explore and clarify the underlying mechanisms, including crosstalk between various types of immune cells and how to design MSNs to create a suitable immune environment for osteogenesis.A conductive-bridge random access memory (CBRAM) has been considered a promising candidate for the next-generation nonvolatile memory technology because of its excellent performance, for which the resistive switching behavior depends on the formation/dissolution of conducting filaments in an electrolyte layer originated by the cation injection from the active electrode with electrochemical reactions. Typically, the controllability of cations into the electrolyte layer is a main issue, leading to stable switching reliability. In this work, an architecture combining spike-shaped Ag electrodes created by Al2O3 nanopillar arrays as a physical diffusion barrier by glancing angle deposition technology was proposed to localize Ag cation injection for the formation of controllable filaments inside TiOx as the switching layer. Interestingly, the dimension of the Ag plugs defined by the topography of Al2O3 nanopillar arrays can control Ag cation injection to influence the dimensionality of conductive filaments. Compared to the typical planar-Ag/TiOx/Pt device, the spiked-Ag/Al2O3 nanopillar arrays/TiOx/Pt device shows improvement of endurance and voltage disturbance. With enhanced multilevel characteristics, the spiked active-metal-based CBRAM device can be expected to serve as an analogue synapse for neuromorphic applications.Opioid therapy is indisputably the mainstay of cancer pain management. However, important issues such as the worldwide variability in the availability and accessibility of opioids, myths and misconceptions about opioid use, and lack of knowledge about prescribing opioids among health care professionals have been pointed out by researchers, clinicians, and several health organizations. In an attempt to improve cancer pain management, guidelines for opioid use were elaborated to assist practitioners in prescrib-ing opioids for the management of cancer‑related pain. Recent opioid guidelines were developed based on a systematic assessment of evidence and they are considered one of the best resources to improve knowledge and clinical practice. However, most of the recommendations for cancer pain management included in these guidelines are based on low levels of evidence, which demonstrates that more studies on the use of opioids in pain management are necessary. Moreover, the increased frequency of pre-scribing opioids for chronic noncancer pain has raised other issues, such as iatrogenic adverse effects, which may also occur in patients with cancer pain on long‑term opioid therapy (L‑TOT). In this narrative review, we discussed the role of opioid guidelines and recent knowledge regarding the consequences of L‑TOT, in particular opioid addiction and deficiencies of the immune and endocrine systems. Finally, we addressed new strategies to strengthen the L‑TOT in the management of cancer‑related pain among patients in palliative care.The two main manifestations of wasting disorders in chronic disease are cachexia and sarcopenia. Due to sharing common pathological features, including impairments in systemic inflammation responses, neurohormonal activity, and metabolic systems, the two disorders can present with similar symptoms (tissue depletion, dyspnoea, anorexia, asthenia, fatigue, and impaired physical performance). Wasting disorders are associated with reduced quality of life and increased mortality. Cachexia is characterized by systemic tissue depletion with weight loss and sarcopenia by skeletal muscle loss accompanied by diminished muscular strength and physical performance. Wasting syndromes can be identified through clinical criteria but also through multiple imaging and diagnostic techniques. Additionally, blood biomarkers can be used for diagnosing wasting disorders. In the past decade, intensive research has focused on new therapeutic strategies within a multimodal approach, which embraces nutritional support, physical activity, and targeted pharmacological therapy. Despite some promising first therapeutic results for selected novel agents, a guideline-recommended pharmacological therapy is not yet available for cachexia or sarcopenia. More research is needed to better understand and thereby learn how to treat these wasting disorders.Several health organizations, mainly in Western countries, have recently authorized the use of a booster dose of the COVID-19 vaccine for patients previously vaccinated with mRNA vaccines, with criteria that do not always coincide. The COVID Scientific Committee of the Illustrious College of Physicians of Madrid (ICOMEM) has received and asked several questions about this situation, to which the group has tried to give answers, after deliberation and consensus. The efficacy of the vaccines administered so far is beyond doubt and they have managed to reduce, fundamentally, the severe forms of the disease. The duration of this protection is not well known, is different in different individuals and for different variants of the virus and is not easily predictable with laboratory tests. Data on the real impact of a supplementary or "booster" dose in the scientific literature are scarce for the moment and its application in large populations such as those in the state of Israel may be associated with a decrease in the risk of new and severe episodes in the short observation period available.