Markussenespersen5521
5 % and 22.8 % compared with those of pure epoxy, respectively. Meanwhile, the flexural and tensile properties of EP/Ni/GNTs were also enhanced.A dielectric barrier discharge reactor packed with both Hopcalite & glass beads has been investigated for the total oxidation of toluene adsorbed on Hopcalite. The catalytic activity and selectivity through the possible formation of by-products during the NTP discharge for the abatement of irreversibly adsorbed toluene have been investigated by FT-IR and mass spectrometer. The regeneration of the used Hopcalite by NTP discharge has been established by (i) determining the amount of toluene adsorbed on NTP regenerated Hopcalite, (ii) investigating the catalytic activity of NTP regenerated Hopcalite and (iii) comparing the bulk and surface properties of the fresh calcined and NTP regenerated Hopcalite. The ratio of amount of irreversibly adsorbed toluene to that of the total amount of adsorbed toluene adsorbed is similar for the fresh calcined and NTP (I) regenerated Hopcalite. The catalytic activity of the NTP (I) regenerated Hopcalite is slightly enhanced when compared to that of the fresh calcined Hopcalite. Although the first NTP treatment induces partial transformation of Hopcalite into Mn3O4 with no detected related CuOx and reduces specific surface area by a factor of 2, the toluene adsorption capacity remains less affected. A plausible reaction scheme for toluene decomposition in Hopcalite PBDBD reactor is proposed.The electrochemical removal of the 1-chloro-2,4-dinitrobenzene (DNCB) herbicide, a potentially carcinogenic agent from aqueous solutions, was performed at PbO2 and BDD electrodes by bulk electrolysis under galvanostatic control (300 and 400 A m-2) and under two pH conditions (3 and 9). Results clearly indicated that a 62 % of mineralization was achieved with BDD anode at pH 3, while only a 46 % of electrochemical oxidation (EO) was achieved at PbO2 electrode. The mineralization current efficiency (MCE) depended on the electrode material, current density, and pH conditions; but, for both PbO2 and BDD, high MCE was achieved at pH 3 and 300 A m-2, obtaining 2.54 % and 1.99 % for BDD and PbO2, respectively. The EO pathway depended on the electrocatalytic properties of each one of the anodes to produce hydroxyl radicals which attacked the DNCB molecule as well as the deactivating effects of the chlorine and nitro groups attached to the aromatic ring on the DNCB structure. Finally, HPLC analyses also showed that phenolic intermediates as well as carboxylic acids were formed, at a different extent, during the electrolysis process on both electrodes.Persulfate-based advanced oxidation technology exhibits great potential for hazardous organic pollutant removal from wastewater. Acceleration of pollutant degradation needs to be elucidated, particularly for heterogeneous catalytic systems. In this study, manganese oxide ordered mesoporous carbon composites (MnOx@OMC) were prepared by nano-casting method and used for persulfate activation to degrade phenol. Kinetics analysis indicate that the rate of phenol degradation using MnOx@OMC composites was improved by 34.9 folds relative to that using a mixture of MnOx and OMC. The phenol toxicity towards Caenorhabditis elegans could be totally reduced within 8 min. The different roles of MnOx and OMC in persulfate activation were confirmed to validate their synergistic effect. MnOx provided major active sites for persulfate activation in accordance with the surface Mn3+/Mn4+ cycle to induce SO4•- radicals. The OMC matrix provided the adsorption sites to enrich phenol molecules on the catalytic surface and promote the interfacial electron transfer process for persulfate activation. Moreover, a novel kinetic model with two distinct kinetic stages was established to verify the effects of phenol and persulfate on phenol removal.The interactive effect of polyethylene microplastic (MP) fragments and benzophenone-3 (BP-3) additives on Daphnia magna was assessed in the present study. The 48 h median effective concentration (EC50) revealed that MP fragments (37.24 ± 11.76 μm; 3.90 mg L-1) were over 80 times more acutely toxic than polyethylene microbeads (37.05 ± 3.96 μm; 323 mg L-1), possibly because of their irregular shape and high specific surface area. Idarubicin manufacturer Moreover, the addition of BP-3 (10.27 ± 0.40 % w/w) to MP fragments (MP + BP-3) resulted in greater acute toxicity to D. magna (EC50 = 0.99 mg L-1) compared to MP fragments (EC50 = 3.90 mg L-1) or BP-3 (EC50 = 2.29 mg L-1) alone. Additionally, MP + BP-3 exposure induced a synergistic increase in reactive oxygen species, total antioxidant capacity, and lipid peroxidation in D. magna. These synergistic effects can be attributed to enhanced bioconcentrations of BP-3 in D. magna caused by MP fragments. These findings suggest that MP fragments containing chemical additives represent a synergistic ecological risk and have the potential to harm aquatic organisms.An efficient Z-scheme Co3O4/g-C3N4 heterojunction photocatalyst was developed via in-situ forming Co3O4 nanocubes on the g-C3N4 nanosheet in the hydrothermal process. The obtained photocatalyst exhibited high photocatalytic activity for the visible-light-driven catalytic reduction of Cr(VI) and catalytic oxidation of tetracycline (TC). Among the as-synthesized catalysts, Co3O4/g-C3N4-0.04 (the mass ratio of g-C3N4 to Co3O4 is 0.04) sample exhibits the most efficient catalytic activities. The photocatalytic reduction and photocatalytic oxidation efficiencies of Co3O4/g-C3N4-0.04 can obtain 81.3 and 92.6 %, respectively. Moreover, the TC is mineralized in the course of photocatalytic degradation, 72.2% of TOC is removed from the reaction system. In addition, the apparent quantum efficiency for the removal of Cr(VI) was also obtained and the the Co3O4/g-C3N4-0.04 could achieve the highest apparent quantum efficiency among the samples. The enhancing photocatalytic activities originated from the efficient interfacial charge migration and separation obtained in Co3O4/g-C3N4-0.04, which is preliminarily confirmed by the photoluminescence spectra, time-resolved photoluminescence spectra and the photoelectrochemical characterizations. Finally, we speculate that the Co3O4/g-C3N4 heterostructures follow a more reasonable Z-scheme charge transfer in this study, which is confirmed by analyzing the results of electron paramagnetic resonance, radical scavenging experiments, and theoretical calculations.