Marktucker6553
Gender (p = 0.450) and age (p = 0.226) did not have a significant correlation with the duration of treatment for COVID-19 patients. Gender (p = 0.174) and age (p = 0.065) also did not have a significant correlation with clinical outcome of COVID-19 patients. Comorbidities showed a significant correlation with duration of treatment (p = 0.002) and clinical outcome (p = 0.014) of COVID-19 patients.
The most effective antiviral agent in this study based on treatment duration was the combination of Oseltamivir + Hydroxychloroquine. The higher the patient's average treatment duration is, the lower the average survival rate for COVID-19 patients.
The most effective antiviral agent in this study based on treatment duration was the combination of Oseltamivir + Hydroxychloroquine. The higher the patient's average treatment duration is, the lower the average survival rate for COVID-19 patients.
Ventilation monitoring during sleep is performed by sleep test instrumentation that is uncomfortable for the patients due to the presence of the flowmeter. The objective of this study was to evaluate if an innovative type 3 wearable system, the X10X and X10Y, is able to correctly detect events of apnea and hypopnea and to classify the severity of sleep apnea without the use of a flowmeter.
40 patients with sleep disordered breathing were analyzed by continuous and simultaneous recording of X10X and X10Y and another certified type 3 system, SOMNOtouch, used for comparison. Evaluation was performed in terms of quality of respiratory signals (scores from 1, lowest, to 5, highest), duration and classification of apneas, as well as identification and duration of hypopneas.
580 periods were evaluated. Mean quality assigned score was 3.37±1.42 and 3.25±1.35 for X10X and X10Y and SOMNOtouch, respectively. The agreement between the two systems was evaluated with grades 4 and 5 in 383 out of 580 cases. A high correlation (r2 = 0.921; p<0.001) was found between the AHI indexes obtained from the two systems. X10X and X10Y devices were able to correctly classify 72.3% of the obstructive apneas, 81% of the central apneas, 61.3% of the hypopneas, and 64.6% of the mixed apneas when compared to SOMNOtouch device.
The X10X and X10Y devices are able to provide a correct grading of sleep respiratory disorders without the need of a nasal cannula for respiratory flow measurement and can be considered as a type 3 sleep test device for screening tests.
The X10X and X10Y devices are able to provide a correct grading of sleep respiratory disorders without the need of a nasal cannula for respiratory flow measurement and can be considered as a type 3 sleep test device for screening tests.
To assess whether machine learning algorithms (MLA) can predict eyes that will undergo rapid glaucoma progression based on an initial visual field (VF) test.
Retrospective analysis of longitudinal data.
175,786 VFs (22,925 initial VFs) from 14,217 patients who completed ≥5 reliable VFs at academic glaucoma centers were included.
Summary measures and reliability metrics from the initial VF and age were used to train MLA designed to predict the likelihood of rapid progression. Additionally, the neural network model was trained with point-wise threshold data in addition to summary measures, reliability metrics and age. 80% of eyes were used for a training set and 20% were used as a test set. read more MLA test set performance was assessed using the area under the receiver operating curve (AUC). Performance of models trained on initial VF data alone was compared to performance of models trained on data from the first two VFs.
Accuracy in predicting future rapid progression defined as MD worsening more than 1 dB/yost likely to rapidly progress with even greater accuracy.
MLA can be used to predict eyes at risk for rapid progression with modest accuracy based on an initial VF test. Incorporating additional clinical data to the current model may offer opportunities to predict patients most likely to rapidly progress with even greater accuracy.Vertical tanks are commonly used appliances for liquids, and its capacity is very important for quantitative liquid ratio and liquid trade. In order to measure the capacity of vertical tanks more conveniently, this paper proposes a vertical tank capacity measurement method based on Monte Carlo Method. The method arranges a plurality of sensor points on the inner surface of the tank, and then performs Monte Carlo tests by generating a large number of random sample points, and finally calculates the capacity by counting the sample points that meet the criterion. The criterion for whether a sample point is located in the tank, which is the core issue, is established with the coordinates of sensor points and the distance between different sensor points along the surface of the tank. The results show that the absolute error of the measurement results of the proposed method does not exceed ±0.0003[m3], and the absolute error of capacity per unit volume has a linear relationship with the height of the vertical tank, and has little effect with the radial size of the vertical tank.
The current use of targeted therapy plus neoadjuvant chemotherapy for inflammatory breast cancer (IBC) is based on data extrapolated from studies in non-IBC. We conducted a systematic review to determine whether neoadjuvant chemotherapy plus targeted therapy results in a higher pathologic complete response (pCR) rate than neoadjuvant chemotherapy alone in patients with IBC.
This systematic review was registered in the PROSPERO register with registration number CRD42018089465. We searched MEDLINE & PubMed, EMBASE, and EBSCO from December 1998 through July 2020. All English-language clinical studies, both randomized and non-randomized, that evaluated neoadjuvant systemic treatment with or without targeted therapy before definitive surgery and reported the pCR results of IBC patients. First reviewer extracted data and assessed the risk of bias using the Risk of Bias In Non-randomized Studies of Interventions tool. Second reviewer confirmed the accuracy. Studies were divided into 3 groups according to systemic treatment chemotherapy with targeted therapy, chemotherapy alone, and high-dose chemotherapy with hematopoietic stem cell support (HSCS).