Markshickey7858
The human chemokine family consists of 46 protein ligands that induce chemotactic cell migration by activating a family of 23 G protein-coupled receptors. The two major chemokine subfamilies, CC and CXC, bind distinct receptor subsets. A sequence motif defining these families, the X position in the CXC motif, is not predicted to make significant contacts with the receptor, but instead links structural elements associated with binding and activation. Here, we use comparative analysis of chemokine NMR structures, structural modeling, and molecular dynamic simulations that suggested the X position reorients the chemokine N terminus. Using CXCL12 as a model CXC chemokine, deletion of the X residue (Pro-10) had little to no impact on the folded chemokine structure but diminished CXCR4 agonist activity as measured by ERK phosphorylation, chemotaxis, and Gi/o-mediated cAMP inhibition. Functional impairment was attributed to over 100-fold loss of CXCR4 binding affinity. Binding to the other CXCL12 receptor, ACKR3, was diminished nearly 500-fold. Deletion of Pro-10 had little effect on CXCL12 binding to the CXCR4 N terminus, a major component of the chemokine-GPCR interface. Replacement of the X residue with the most frequent amino acid at this position (P10Q) had an intermediate effect between WT and P10del in each assay, with ACKR3 having a higher tolerance for this mutation. This work shows that the X residue helps to position the CXCL12 N terminus for optimal docking into the orthosteric pocket of CXCR4 and suggests that the CC/CXC motif contributes directly to receptor selectivity by orienting the chemokine N terminus in a subfamily-specific direction.Coral reefs are experiencing precipitous declines around the globe with coral diseases and temperature-induced bleaching being primary drivers of these declines. Regulation of apoptotic cell death is an important component in the coral stress response. Although cnidaria are known to contain complex apoptotic signaling pathways, similar to those in vertebrates, the mechanisms leading to cell death are largely unexplored. We identified and characterized two caspases each from Orbicella faveolata, a disease-sensitive reef-building coral, and Porites astreoides, a disease-resistant reef-building coral. The caspases are predicted homologs of the human executioner caspases-3 and -7, but OfCasp3a (Orbicella faveolata caspase-3a) and PaCasp7a (Porites astreoides caspase-7a), which we show to be DXXDases, contain an N-terminal caspase activation/recruitment domain (CARD) similar to human initiator/inflammatory caspases. OfCasp3b (Orbicella faveolata caspase-3b) and PaCasp3 (Porites astreoides caspase-3), which we show to be VXXDases, have short pro-domains, like human executioner caspases. Our biochemical analyses suggest a mechanism in coral which differs from that of humans, where the CARD-containing DXXDase is activated on death platforms but the protease does not directly activate the VXXDase. The first X-ray crystal structure of a coral caspase, of PaCasp7a determined at 1.57 Å resolution, reveals a conserved fold and an N-terminal peptide bound near the active site that may serve as a regulatory exosite. The binding pocket has been observed in initiator caspases of other species. SY5609 These results suggest mechanisms for the evolution of substrate selection while maintaining common activation mechanisms of CARD-mediated dimerization.Cellular prion protein (PrPC) is a widely expressed glycosylphosphatidylinositol-anchored membrane protein. Scrapie prion protein is a misfolded and aggregated form of PrPC responsible for prion-induced neurodegenerative diseases. Understanding the function of the nonpathogenic PrPC monomer is an important objective. PrPC may be shed from the cell surface to generate soluble derivatives. Herein, we studied a recombinant derivative of PrPC (soluble cellular prion protein, S-PrP) that corresponds closely in sequence to a soluble form of PrPC shed from the cell surface by proteases in the A Disintegrin And Metalloprotease (ADAM) family. S-PrP activated cell-signaling in PC12 and N2a cells. TrkA was transactivated by Src family kinases and extracellular signal-regulated kinase 1/2 was activated downstream of Trk receptors. These cell-signaling events were dependent on the N-methyl-d-aspartate receptor (NMDA-R) and low-density lipoprotein receptor-related protein-1 (LRP1), which functioned as a cell-signaling receptor system in lipid rafts. Membrane-anchored PrPC and neural cell adhesion molecule were not required for S-PrP-initiated cell-signaling. S-PrP promoted PC12 cell neurite outgrowth. This response required the NMDA-R, LRP1, Src family kinases, and Trk receptors. In Schwann cells, S-PrP interacted with the LRP1/NMDA-R system to activate extracellular signal-regulated kinase 1/2 and promote cell migration. The effects of S-PrP on PC12 cell neurite outgrowth and Schwann cell migration were similar to those caused by other proteins that engage the LRP1/NMDA-R system, including activated α2-macroglobulin and tissue-type plasminogen activator. Collectively, these results demonstrate that shed forms of PrPC may exhibit important biological activities in the central nervous system and the peripheral nervous system by serving as ligands for the LRP1/NMDA-R system.Prions result from a drastic conformational change of the host-encoded cellular prion protein (PrP), leading to the formation of β-sheet-rich, insoluble, and protease-resistant self-replicating assemblies (PrPSc). The cellular and molecular mechanisms involved in spontaneous prion formation in sporadic and inherited human prion diseases or equivalent animal diseases are poorly understood, in part because cell models of spontaneously forming prions are currently lacking. Here, extending studies on the role of the H2 α-helix C terminus of PrP, we found that deletion of the highly conserved 190HTVTTTT196 segment of ovine PrP led to spontaneous prion formation in the RK13 rabbit kidney cell model. On long-term passage, the mutant cells stably produced proteinase K (PK)-resistant, insoluble, and aggregated assemblies that were infectious for naïve cells expressing either the mutant protein or other PrPs with slightly different deletions in the same area. The electrophoretic pattern of the PK-resistant core of the spontaneous prion (ΔSpont) contained mainly C-terminal polypeptides akin to C1, the cell-surface anchored C-terminal moiety of PrP generated by natural cellular processing.