Mangumogden3703

Z Iurium Wiki

Researchers, regulatory authorities, and managers in the poultry industry have assessed the challenges associated with these restrictions. Research has sought to identify alternatives to antibiotic growth promoters for poultry that do not have any adverse effects. Modulating the host intestinal microbiome by regulating dietary factors is much easier than manipulating host genetics. Research efforts have led to the identification of feed additives, including bacteriocins, immunostimulants, organic acids, phytogenics, prebiotics, probiotics, phytoncides, and bacteriophages. In contrast to focusing on one or more of these alternative bioadditives, an improved feed conversion ratio with enhanced poultry products is possible by employing a combination of feed additives. This article may be helpful in future research towards developing a sustainable poultry industry through the use of the proposed alternatives.Atrazine has a detrimental effect on soybean growth in corn-soybean rotation systems. A knowledge gap exists regarding how rhizosphere microbial interactions respond to atrazine stress, and specifically, whether they may alleviate the detriment of atrazine on soybeans, this serving as a target to alleviate the adverse impact. Biochar are widely used for remediation in herbicide contamination soil, however, little is known about how biochar fuels the microbiomes in rhizosphere to improve soybean performance. We investigated the response of the microbial community to atrazine stress with and without biochar application to soybean cultivation in a greenhouse experiment. Atrazine had detrimental effects on soybeans and nodules, reshaping the microbial community in both the bulk and rhizosphere soil. Biochar application was able to ameliorate atrazine effects on soybean and nodule activity, with an increase in competition among microbes in the soybean rhizosphere soils. Biochar favored the probiotics such as the bacteria Lysobacter, Paenarthrobacter, and Sediminibacterium in the rhizosphere soils. The relative abundance of Lysobacter exhibited strong-negative correlations with potential pathogens. Elastic net regression with bioindicators and environmental factors accurately predicted the residual content of atrazine in soil. Collectively, our results provide a practical strategy of using biochar to improve soil quality for corn-soybean rotation that is contaminated with residual atrazine. Overall, beneficial plant microbes and changes in microbial interactions and assembly processes in the soybean rhizosphere are capable of alleviating atrazine stress on soybean growth.Perennial pastures play a crucial role in mixed farming systems by supplying feed for livestock, restoring soil fertility, reducing deep drainage, providing an opportunity to manage herbicide-resistant weeds and breaking soil-borne disease cycles. However, to our knowledge there is no data on the role of perennial pastures in mitigating N2O emissions from the phased crop rotations in semi-arid environments. PF-04957325 in vitro Two 4-year field experiments were conducted in a semi-arid environment in southern Australia to (a) evaluate the role of perennial pastures in mitigating N2O emissions in mixed farming systems, and (b) compare the cumulative N2O emissions from different pasture mixes. Results showed that the annual N2O emissions were 31% lower from chicory-based pastures and 12-17% lower from perennial grass-based pastures compared with lucerne-based pastures. During the pasture phase, actively growing pastures kept N2O emissions at a relatively low level (59 g N2O-N ha-1 year-1), but N2O emissions increased significantly upon termination of the pastures. Results showed that the N2O emitted during the summer (December to February) after the pastures were terminated accounted for 70% of the total N2O emissions in the final pasture year. Furthermore, perennial grass and chicory-based pastures were highly productive during favorable conditions, leading to a low N2O emission intensity. It is suggested that emphasis be placed on utilizing highly persistent species to foster a longer and more productive pasture phase, and to manage N-supply in the transition between pasture and crop phases as this is where the greatest risk of N2O emission exists.The scientific community has believed the potential of waste PET plastics as an effective carbon precursor, however, developing PET-derived activated carbons (PETACs) for a specific application is still a challenge we are facing. To overcome the limitation, a whole chain from development method screening to experiments design, finally to sample optimization, for a sample with promising performance, is proposed in this work. By employing PETACs as CO2 adsorbents, the waste PET plastics, which we believed the "diamond in the rough", have been polished successfully. Therewith the problems of plastic pollution and the greenhouse effect could be simultaneously solved. The first half part of this paper is a mini review the PETACs development methods were reviewed and the most suitable solution to develop CO2 adsorbent, i.e., the two-step chemical activation method, was selected. In addition to that, the necessary procedure variables and their value range were determined. In the second half part, the central composite design method was applied for experiments design in which the procedure variables obtained were regarded as the independent indicators (factors here) while the performance indicators, including yield, CO2 adsorption uptake, and CO2 over N2 selectivity, were treated as the dependent indicators (responses here). The responses were obtained through the characterization of the samples developed and statistical analysis could be applied to reveal the relations between the factors and responses. A high-value PETAC, P600K600-1.5, with the highest gas selectivity (22.189) and decent CO2 adsorption uptake (3.933 mmol/g) was successfully designed.Small craft harbours are vital for the fishing industry and have high socioeconomic and cultural importance for surrounding communities. Presence of potential contaminants of concern in small craft harbour sediments can have significant impacts in biota and humans, including fishing activities and the local economy. While single contaminant sediment concentrations may be below sediment quality guidelines, the interaction of multiple contaminants in sediments may potentially exacerbate chemical ecological risk. An ecological risk evaluation for four classes of contaminants (i.e., petroleum hydrocarbons, polychlorinated biphenyls, polycyclic aromatic hydrocarbons and metals) was conducted in 31 small craft harbours in Nova Scotia, Canada, using two approaches (i.e., mean probable effect level quotient and number and frequency of sediment quality guideline exceedances). Most small craft harbours showed a low ecological risk to marine biota, with only two small craft harbours suggesting high risk. While urgent action is not needed, monitoring is recommended for these small craft harbours to confirm that pollution is not increasing, and to potentially identify and control contamination sources.Metal oxide nanoparticles (MONPs) with a large specific surface area are expected to bind with antibiotic resistance genes (ARGs), thereby controlling ARGs' contamination by reducing their concentration and mobilization. Here, adsorption experiments were carried out and it was found that α-Fe2O3 NPs could chemically bind with ARGs (tetM-carrying plasmids) in water with an adsorption rate of 0.04 min-1 and an adsorption capacity of 7.88 g/kg. Mixing α-Fe2O3 NPs into quartz sand column markedly increased the interceptive removal of ARGs from inflow water. The interception rate of 1.0 μg/mL ARGs in ultrapure water (25 mL, 5 pore volumes) through the sand column (plexiglass, length 8 cm, internal diameter 1.4 cm) with 1 g/kg α-Fe2O3 NPs was 1.73 times of that through the pure sand column; the interception rate overall increased with increasing addition of α-Fe2O3 NPs, reaching 68.8% with 20 g/kg α-Fe2O3 NPs. Coexisting Na+ (20 mM), Ca2+ (20 mM), and acidic condition (pH 4.0) could further increase the interception rate of ARGs by 1 g/kg α-Fe2O3 NPs from 21.1% to 86.2%, 90.7%, and 96.2%, respectively. The presence of PO43- and humic acid at environmentally relevant concentrations would not significantly affect the interception of ARGs. In the treatment groups with PO43- and humic acid, the removal rate decreased by only 1.8% and 0.1%, respectively. In addition, the interceptive removal of ARGs by α-Fe2O3 NPs-incorporated sand column was even better in actual surface water samples (87.2%) than that in the ultrapure water (21.1%). The findings provide a promising approach to treat ARGs-polluted water.River networks play important roles in dissemination of antibiotic resistance genes (ARGs). The occurrence, diversity, and abundance of ARGs in river networks have been widely investigated. However, the assembly processes that shaped ARGs profiles across space and time are largely unknown. Here, the dynamics of ARGs profiles in river networks (Taihu Basin) were revealed by high-throughput quantitative PCR followed by multiple statistical analyses to assess the underlying ecological processes. The results revealed clear variations for ARGs profiles across wet, normal, and dry seasons. Meanwhile, a significant negative correlation (p less then 0.01) was observed between the similarity of ARGs profiles and geographic distance, indicating ARGs profiles exhibited distance-decay patterns. Null model analysis showed that ARGs profiles were mainly assembled via deterministic processes. Redundancy analysis followed by hierarchical partitioning revealed that environmental attributes (mainly pH and temperature) were the major factors affecting the dynamics of ARGs profiles. Together, these results indicated that environmental filtering was the dominant ecological process that shaped ARGs profiles. This study enhances our understanding how the antibiotic resistome is assembled in river networks and will be beneficial for the development of management strategies to control ARGs dissemination.Catalytic ozonation has prospects in the advanced treatment of nitrogen removal, and solid base MgO can efficiently catalyze the ozonation of ammonium nitrogen. However, it is necessary to improve the problem of easy loss, difficult recovery, and low percentage of gaseous products. Here, MgO, amorphous Fe2O3, and γ-Al2O3 were selected as doping components and supports, respectively, to prepare γ-Al2O3@Fe/Mg composite catalysts with abundant acidic-basic sites and oxygen vacancies. The results show that γ-Al2O3@Fe/Mg5 can efficiently catalyze the ozonation of ammonium nitrogen (98.73%) with 67.82% gaseous product selectivity under the conditions of initial pH = 7, catalyst dosage of 112.88 g/L, and ozone dosage of 2.4 mg/min. The doping of Fe2O3 and MgO with a weaker lattice oxygen binding energy improves the gaseous product selectivity. The mechanism of ammonium nitrogen removal for γ-Al2O3@Fe/Mg5 is revealed, especially the intrinsic contribution of acidic-basic sites and oxygen vacancies. The pH and active sites play different roles in ozone decomposition for NH4+ removal. Surface hydroxyl protonation on basic sites and oxygen vacancies and electron transfer on acidic sites are responsible for ozone decomposition to hydroxyl radicals. Moreover, γ-Al2O3@Fe/Mg5 exhibits good stability, few leaching ions, and can be settled in water for easy recovery. This study suggests that γ-Al2O3@Fe/Mg5 is a good candidate for the catalytic ozonation of ammonium nitrogen.

Autoři článku: Mangumogden3703 (Warner Morgan)