Mangumhickey6471
For both typhoons, emergency transfer has a higher determining power (q) ranking for the population vulnerability, while the percentage of the GDP made up of primary industry have higher q ranking for economic vulnerability. The dominant interaction effects between two vulnerability factors differ depending on the typhoon and loss type but show a nonlinear enhancement effect in most cases. Moreover, changes in the maximum 4-hour accumulated rainfall account for most of the change in vulnerability between Hato and Mangkhut. Overall, the results can be conducive to understanding the complexity of vulnerability to typhoons and provide a reference for possible indicators for vulnerability assessment models, and determining the reasons for changes in vulnerability can be constructive to the formulation of specific policies for disaster prevention and mitigation.Measurement networks for ultrafine particulate matter (PM0.1) have been limited by the high costs for equipment, supplies, and labor associated with the need to collect PM0.1 samples on multiple substrates for full chemical analysis. Here we explore whether a single cascade impactor loaded with aluminum foil substrates is sufficient for PM0.1 source apportionment calculations in order to reduce those costs. An extraction method previously designed to measure elements on Teflon substrates was modified to accommodate features of aluminum foil substrates. Regression analysis between co-located aluminum foil and Teflon substrates in the particle diameter range 0.1-1.8 μm showed good agreement (R > 0.7) for 18 elements. Regression in the diameter range 0.1-0.18 μm (quasi-ultrafine particulate matter) was used to characterize the uncertainty introduced by the aluminum foil extraction method for the elements Li, K, V, Br, Rb, Mo, Cd, Sn, Sb, and Ba. This uncertainty was used to generate 30 simulated aluminum foil PM0.1 datasets at each of three sites, followed by source apportionment analysis using Positive Matrix Factorization (PMF). At two of the three sites, the PM0.1 source contributions calculated using aluminum foil substrates alone were almost identical to the PMF results from combined aluminum foil and Teflon substrates. The PM0.1 source contributions calculated using aluminum foil substrates at the third site were closer to the results from a previous Chemical Mass Balance (CMB) study than to the PMF results from the combined aluminum foil and Teflon substrates, possibly because the CMB study also relied exclusively on samples collected using aluminum foil substrates. The success of the PM0.1 source apportionment approach using aluminum foil substrates in a single cascade impactor provides a viable method for reducing costs in PM0.1 sampling networks by 40-47%. Similar results may be achievable at locations outside of California.Graphene oxide (GO) are novel nanomaterials with a wide range of applications due to their high absorption capacity. This study was undertaken with a view to assess the bioaccumulation and acute toxicity of GO used in combination with the heavy metal mixture (Cr, Cu, Ni and Zn) to fish embryos and larvae. For this purpose, Salmo trutta embryos and larvae were subjected to the 4-day long treatment with three different concentrations of GO, the metal mixture, which was prepared of four metals at the concentrations corresponding to the maximum-permissible-concentrations for EU inland waters (Cr-0.01, Cu-0.01, Ni-0.034, and Zn-0.1 mg/L), and with GO in combination with MIX (GO+MIX). When used in combination with the metal mixture, GO exhibited a high metal sorption capacity. The obtained confocal fluorescence microscopy results showed that GO located in the embryo chorion causing its damage; in larvae, however, GO were found only in the gill region. Results of these experiments confirmed the hypothesis that GO affects the accumulation of metals and mitigates their toxic effects on organism. In embryos, the acute toxicity of exposure to GO and co-exposure to MIX+GO was found to manifest itself through the decreased heart rate (HR) and malondialdehyde (MDA) level and through the increased metallothionein (MT) concentration. Meanwhile, in larvae, GO and MIX+GO were found to induce genotoxicity effects. However, changes in HR, MDA, MT, gill ventilation frequency, yolk sack absorption and cytotoxicity compared with those of the control group were not recorded in larvae. The obtained results confirmed our hypothesis the combined effect of MIX and GO was less toxic to larvae (especially survival) than individual effects of MIX components. However, our results emphasize that fish exposure to GO alone and in combination with heavy metal contaminants (MIX+GO) even at environmentally relevant concentrations causes health risks that cannot be ignored.Nitrite-dependent anaerobic methane oxidation (n-damo), catalyzed by bacteria closely related to Candidatus Methylomirabilis oxyfera, links the global carbon and nitrogen cycles. Currently, the contribution of n-damo in controlling methane emissions and nitrogen removal, and the key regulatory factors of this process in Chinese paddy fields are poorly known. Here, soil samples from 20 paddy fields located in different climate zones across China were collected to examine the n-damo activity and bacterial communities. The n-damo activity and bacterial abundance varied from 1.05 to 5.97 nmol CH4 g-1 (dry soil) d-1 and 2.59 × 105 to 2.50 × 107 copies g-1 dry soil, respectively. Based on the n-damo activity, it was estimated that approximately 0.91 Tg CH4 and 2.17 Tg N could be consumed annually via n-damo in Chinese paddy soils. The spatial variations in n-damo activity and community structure of n-damo bacteria were significantly (p less then 0.05) affected by the soil ammonium content, labile organic carbon content and pH. Furthermore, significant differences in n-damo activity, bacterial abundance and community composition were observed among different climate zones. ZEN-3694 The n-damo activity was found to be positively correlated with the mean annual air temperature. Taken together, our results demonstrated the potential importance of n-damo in both methane consumption and nitrogen removal in Chinese paddy soils, and this process was regulated by local soil and climatic factors.Organic micropollutants (OMPs) need to be removed from wastewater as they can negatively affect aquatic organisms. It has been demonstrated that microalgae-based technologies are efficient in removing OMPs from wastewater. In this study, the removal processes and kinetics of six persistent OMPs (diclofenac, clarithromycin, benzotriazole, metoprolol, carbamazepine and mecoprop) were studied during cultivation of Scenedesmus obliquus in batch mode. These OMPs were added as individual compounds and in a mixture. Short experiments (8 days) were performed to avoid masking of OMP removal processes by light and nutrient limitation. The results show that diclofenac, clarithromycin, and benzotriazole were mainly removed by photodegradation (diclofenac), biodegradation (benzotriazole), or a combination of these two processes (clarithromycin). Peroxidase was involved in intracellular and extracellular biodegradation when benzotriazole was present as individual compound. Carbamazepine, metoprolol and mecoprop showed no biodegradation or photodegradation, and neglectable removal ( less then 5%) by bioadsorption and bioaccumulation. Using an OMP mixture had an adverse effect on the photodegradation of clarithromycin and diclofenac, with reduced first-order kinetic constants compared to the individual compounds. Benzotriazole biodegradation was inhibited by the presence of the OMP mixture. This indicates that the presence of OMPs inhibits the photodegradation and biodegradation of some individual OMPs. These results will improve our understanding of removal processes of individual and mixtures of OMPs by microalgae-based technologies for wastewater treatment.Microplastics (MPs) and nanoplastics (NPs) are ubiquitous in natural habitats and the risks their presence poses to marine environments and organisms are of increasing concern. There is evidence that seagrass meadows are particularly prone to accumulate plastic debris, including polystyrene particles, but the impacts of this pollutant on seagrass performance are currently unknown. This is a relevant knowledge gap as seagrasses provide multiple ecosystem services and are declining globally due to anthropogenic impact and climate-change-related stressors. Here, we explored the potential effects of a 12 day-exposure of seagrasses to one concentration (68 μg/L) of polystyrene MPs and NPs on the growth, oxidative status, and photosynthetic efficiency of plants using the foundation species Cymodocea nodosa as a model. Among plant organs, adventitious roots were particularly affected by MPs and NPs showing complete degeneration. The number of leaves per shoot was lower in MPs- and NPs-treated plants compared to conthin seagrass meadows.Plant carbon (C) assimilation is expected to nonlinearly increase with continuously increasing nitrogen (N) deposition, causing a N saturation threshold for productivity. However, the response of plant productivity to N deposition rates and further the N saturation threshold still await comprehensive quantization for forest ecosystem. Here, we tested the effect of N addition on aboveground net primary productivity (ANPP) of three-year old Chinese fir (Cunninghamia lanceolata) trees by adding N at 0, 5.6, 11.2, 22.4, and 44.8 g N m-2 yr-1 for 2.5 years. The N saturation threshold was estimated based on a quadratic-plus-plateau model. Results showed that ANPP transitioned from an increasing stage with increasing N addition rate to a plateaued stage at an N rate of 16.3 g N m-2 yr-1. The response of ANPP to N addition rates was well explained by the net photosynthetic rates of needles. Results from the dual isotope measurement [simultaneous determination of needle stable carbon (δ13C) and oxygen (δ18O) isotopes] indicated that the photosynthetic capacity, rather than the stomatal conductance, mediated the response of photosynthesis and ANPP of the young Chinese fir trees to N addition. Accordingly, the amount of needle N partitioning to water-soluble fraction, which is associated with the photosynthetic capacity, also responded to N enrichment with a nonlinear increase. Our study will contribute to a more accurate prediction on the influence of N deposition on C cycles in Chinese fir plantations.Fertilizer and irrigation regimes can profoundly affect soil carbon (C) emissions, which influence soil organic carbon (SOC) storage. However, information regarding the effects of fertilizer and irrigation management on the components of soil respiration (Rs) and the underlying microbial community characteristics in vineyard ecosystems remains limited. Therefore, a 2-year field experiment was conducted in a wine-grape vineyard (WGV) and a table-grape vineyard (TGV). Each vineyard included two fertilizer and irrigation regimes farmers' practice (FP) and recommended practice (RP). The trenching method was employed to separate Rs into heterotrophic respiration (Rh) and autotrophic respiration (Ra). Additionally, the SOC storage and soil microbial community structure at 0-20 cm soil depth were determined after the 2-year experiment. The results showed that the fertilizer and irrigation regimes caused no effect on Ra. Compared with the FP treatment in WGV and TGV, the RP treatment significantly (P less then 0.05) decreased the average daily Rh by 15.