Malonemeadows4560

Z Iurium Wiki

The phylogenomic analysis conducted here, based on 63 protein-coding genes, 30 transfer RNA genes and 21 ribosomal RNA genes from 36 species of Asteraceae, were overall consistent with the general consensus for the family's phylogeny while resolving the position of tribe Senecioneae and revealing some incongruences at tribe level between reconstructions based on nuclear and plastid DNA data.In this review, we explore how ecological concepts may help assist with applying microbial biocontrol agents to oomycete pathogens. Oomycetes cause a variety of agricultural diseases, including potato late blight, apple replant diseases, and downy mildew of grapevine, which also can lead to significant economic damage in their respective crops. The use of microbial biocontrol agents is increasingly gaining interest due to pressure from governments and society to reduce chemical plant protection products. The success of a biocontrol agent is dependent on many ecological processes, including the establishment on the host, persistence in the environment, and expression of traits that may be dependent on the microbiome. This review examines recent literature and trends in research that incorporate ecological aspects, especially microbiome, host, and environmental interactions, into biological control development and applications. D609 We explore ecological factors that may influence microbial biocontrol agents' efficacy and discuss key research avenues forward.9 Russian Vitis vinifera grape varieties and the European variety Muscat Hamburg were sequenced and genotyped using 527 SNPs (single nucleotide polymorphisms) with high minor allele frequency for the first time. The data were coupled with previously identified genotypes of 783 varieties and subjected to parentage and population analysis. As a result, contrary to the historical and ampelographic data published in many sources from 1800 to 2012, only two of the nine Russian varieties (Pukhlyakovskiy Belyi and Sibirkovyi) were related to foreign ones and were obviously imported from Europe to the Russian Empire. The remaining seven varieties, led by Krasnostop Zolotovskiy, are not directly related either in the Caucasus or in Europe, they form separate clusters on the genetic distance-based dendrogram and the world parentage network of V. vinifera. The resulting pedigree of Muscat Hamburg and its descendants is in accordance with SSR-based (simple sequence repeats) studies and the described pedigree of this variety which confirms the use of the reduced SNP set for further studies.Fruit from A. hippocastanum L. are used commercially for chronic venous insufficiency (CVI). The isomeric mixture of pentacyclic triterpenoid saponins (β-aescin) exert anti-inflammatory effects. Hence, research has focused on β-aescin, yet the diversity, accumulation, and bioactivity of organ-specific secondary metabolites represent missed pharmacological opportunities. To this end, we applied an untargeted metabolomics approach by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to the chemical profiles of flowers, immature fruits, and pedicels from 40 specimens across 18 species of Aesculus. Principal component analysis (PCA), orthogonal partial least squares (OPLS-DA), and molecular networking revealed stronger chemical differences between plant organs, than between species. Flowers are rich in glycosylated flavonoids, pedicels in organic acids and flavonoid aglycones, and immature fruits in monomeric flavan-3-ols and procyanidins. Although a high diversity of flavonoids and procyanidins was observed, the relative amounts differed by plant organ. Fruit extracts demonstrated the strongest antifungal (Saccharomyces cerevisiae) and antioxidant activity, likely from the procyanidins. Overall, secondary metabolite profiles are organ-specific, and fruits accumulate antifungal and antioxidant compounds. Due to the chemical similarity between species, similar effects may be achieved between species. This creates incentives for further exploration of the entire genus, in bioprospecting for potential therapeutic leads.Wheat blast (WB) disease, since its first identification in Bangladesh in 2016, is now an established serious threat to wheat production in South Asia. There is a need for sound knowledge about resistance sources and associated genomic regions to assist breeding programs. Hence, a panel of genotypes from India and Bangladesh was evaluated for wheat blast resistance and a genome-wide association study (GWAS) was performed. Disease evaluation was done during five crop seasons-at precision phenotyping platform (PPPs) for wheat blast disease at Jashore (2018-19), Quirusillas (2018-19 and 2019-20) and Okinawa (2019 and 2020). Single nucleotide polymorphisms (SNP) across the genome were obtained using DArTseq genotyping-by-sequencing platform, and in total 5713 filtered markers were used. GWAS revealed 40 significant markers associated with WB resistance, of which 33 (82.5%) were in the 2NS/2AS chromosome segment and one each on seven chromosomes (3B, 3D, 4A, 5A, 5D, 6A and 6B). The 2NS markers contributed significantly in most of the environments, explaining an average of 33.4% of the phenotypic variation. Overall, 22.4% of the germplasm carried 2NS/2AS segment. So far, 2NS translocation is the only effective WB resistance source being used in the breeding programs of South Asia. Nevertheless, the identification of non-2NS/2AS genomic regions for WB resistance provides a hope to broaden and diversify resistance for this disease in years to come.The secretory structures of Alismataceae have been described as secretory ducts, laticifer ducts, laticifer canals or schizogenous ducts. However, these terms are not found in the specialized literature, and ontogenetic analyses for the exact classification of these structures are missing. Accordingly, more studies regarding the secretory structures of Alismataceae are necessary to establish homology in the family or in the order. Thus, the aim of this study was to describe the anatomy, ontogeny, distribution in the organs and exudate composition of the secretory structures present in five Alismataceae species in order to determine whether the family has laticifers or secretory ducts. Samples of leaves, flowers and floral apices were processed for anatomical and histochemical analyses by light microscopy. The analysis indicated the presence of anastomosing secretory ducts in all species, occurring in both leaves and flowers. The exudate contains lipids, alkaloids, proteins and polysaccharides, including mucilage. The secretory duct structure, distribution and exudate composition suggest a defense role against herbivory and in wound sealing. The presence of secretory ducts in all species analyzed indicates a probable synapomorphy for the family.The essential oil industry of aromatic herbs and spices is currently producing a significant amount of by-products, such as the spent plant materials remaining after steam or hydrodistillation, that are simply discarded. The aim of this study was to comparatively investigate the phytochemical composition, antioxidant and multi-enzymatic inhibitory potential of the essential oils and spent plant material extractives obtained from cinnamon, cumin, clove, laurel, and black pepper. The essential oils were characterized by the presence of several phytochemical markers (cinnamaldehyde, cuminaldehyde, eugenol, eucalyptol, α-terpinene, limonene, β-caryophyllene or β-pinene). On the other hand, the LC-HRMS/MS profiling of the spent material extracts allowed the annotation of species specific and non-specific metabolites, such as organic acids, phenolic acids, flavonoids, proanthocyanidins, hydrolysable tannins, fatty acids, or piperamides. All samples exhibited very strong antioxidant effects, with the clove essential oil displaying the strongest radical scavenging (525.78 and 936.44 mg TE/g in DPPH and ABTS assays), reducing (2848.28 and 1927.98 mg TE/g in CUPRAC and FRAP), and total antioxidant capacity (68.19 mmol TE/g). With respect to the anti-acetylcholinesterase (0.73-2.95 mg GALAE/g), anti-butyrylcholinesterase (0-3.41 mg GALAE/g), anti-tyrosinase (0-76.86 mg KAE/g), anti-amylase and anti-glucosidase (both 0-1.00 mmol ACAE/g) assays, the spice samples showed a modest activity. Overall, our study reports that, not only the volatile fractions of common spices, but also their spent plant materials remaining after hydrodistillation can be regarded as rich sources of bioactive molecules with antioxidant and multi-enzymatic inhibitory effects.Barley (Hordeum vulgare L.) is an important food security crop due to its high-stress tolerance. This study explored the effects of CO2 enrichment (eCO2) on the growth, yield, and water-use efficiency of Ethiopian barley cultivars (15 landraces, 15 released). Cultivars were grown under two levels of CO2 concentration (400 and 550 ppm) in climate chambers, and each level was replicated three times. A significant positive effect of eCO2 enrichment was observed on plant height by 9.5 and 6.7%, vegetative biomass by 7.6 and 9.4%, and grain yield by 34.1 and 40.6% in landraces and released cultivars, respectively. The observed increment of grain yield mainly resulted from the significant positive effect of eCO2 on grain number per plant. The water-use efficiency of vegetative biomass and grain yield significantly increased by 7.9 and 33.3% in landraces, with 9.5 and 42.9% improvement in released cultivars, respectively. Pearson's correlation analysis revealed positive relationships between grain yield and grain number (r = 0.95), harvest index (r = 0.86), and ear biomass (r = 0.85). The response of barley to eCO2 was cultivar dependent, i.e., the highest grain yield response to eCO2 was observed for Lan_15 (122.3%) and Rel_10 (140.2%). However, Lan_13, Land_14, and Rel_3 showed reduced grain yield by 16, 25, and 42%, respectively, in response to eCO2 enrichment. While the released cultivars benefited more from higher levels of CO2 in relative terms, some landraces displayed better actual values. Under future climate conditions, i.e., future CO2 concentrations, grain yield production could benefit from the promotion of landrace and released cultivars with higher grain numbers and higher levels of water-use efficiency of the grain. The superior cultivars that were identified in the present study represent valuable genetic resources for future barley breeding.Cadmium (Cd) is among the most available and most toxic heavy metals taken up by plants from soil. Compared to the classic plant-animal food chains, the host-parasitic plant food chains have, thus far, been largely overlooked in the studies of Cd trophic transfer. To investigate the pattern of Cd transfer during the infection of parasitic plants on Cd-contaminated hosts, we conducted a controlled experiment that grew soybeans parasitized by Chinese dodders (Cuscuta chinensis) in soil with different levels of Cd treatment, and examined the concentration, accumulation, allocation and transfer coefficients of Cd within this parasitic system. Results showed that among all components, dodders accounted for more than 40% biomass of the whole system but had the lowest Cd concentration and accumulated the least amount of Cd. The transfer coefficient of Cd between soybean stems and dodders was much lower than 1, and was also significantly lower than that between soybean stems and soybean leaves. All these features were continuously strengthened with the increase of Cd treatment levels.

Autoři článku: Malonemeadows4560 (Crouch Maurer)