Mallingbatchelor6564
Two newly synthesized Schiff bases DMCA and DMBA were used for selective detection of Cd2+ over a wide range of other metal ions in acetonitrile (ACN)/ Tris-HCl buffer (10 mM, pH 7.32, v/v 21). The sensors can detect Cd2+ ions by colour changes from colourless to orange for DMBA and yellow to reddish for DMCA. Response of the probes towards metal ions was investigated by using UV-vis spectroscopy. The complex stoichiometry between the sensors, DMBA and DMCA, and Cd2+ was found to be 21 and the binding constants were calculated to be 2.65 ×1012 M-2 and 4.95 ×1012 M-2, respectively. The absorbance-based detection limits of DMBA and DMCA were calculated as 0.438 μM and 0.102 μM, respectively. The sensors were also successfully applied to real samples.Wool has disulphide bonds containing-hydrophobic external keratin layers, which act as a barrier for the modification through coating with hydrophilic materials. For that reason, in this work, to ensure a dense and homogenous conductive polymer coating onto the wool, the fabrics were subjected to the reduction process in the aqueous alkaline medium containing agents that can attack these disulphide bonds. Then, one of the polyaniline derivatives, poly(mtoluidine) (PMT), was coated onto wool by in situ polymerization of m-toluidine sulphate using ammonium persulfate (APS) as an oxidant. The effects of conditions, such as the composition of reduction-bath and types of dopants were investigated, on the mass increase (%) and surface resistivity of the composite. The reduction pretreatment of wool with sodium hydrosulphide significantly improved the coating density, conductivity, and colour shade of PMT on the surface, compared to an untreated one. The coating stability of PMT/wool composite was examined by rubbing test and detergent washing, through surface resistivity measurements. The changes in structural and surface properties of wool fabrics were determined with ATR-FTIR, contact angle, and optical microscopic techniques, respectively. The performance of PMT/wool composite was also examined in the electromagnetic shielding effectiveness (EMSE) measurements within 30 MHz-3 GHz.Poly(ethylene glycol) bis(methylimidazolium) di[bis(trifluoromethylsulfonyl)imide] was synthesized as an ionic liquid and impregnated onto chitosan. The removal of uranium(VI) ions from aqueous solution was investigated with batch sorption tests using ionic liquid impregnated chitosan. Response surface methodology based on 3 level Box-Behnken design was applied to analyze the effect of initial pH (4-6), initial concentration (20-60 mg L-1), contact time (15-105 min), and temperature (30-50 °C) on the uptake capacity of uranium(VI). Main effect of initial concentration, quadratic effect of contact time, and dual effect of initial pH and contact time were found statistically significant based on analysis of variance (ANOVA). Probability F-value (F = 1.49 ×10-6) and correlation coefficient (R2 = 0.96) point out that the proposed model is compatible with experimental data. The maximum uptake capacity of uranium(VI) was found as 28.48 mg g-1 at initial pH 4, initial concentration 60 mg L-1, contact time of 70 min, and a temperature of 50 °C. Sorption kinetics followed a pseudo-second-order model and Freundlich model was obtained to fit the sorption data. The presence of competing ions slightly reduced uranium(VI) sorption and the selectivity order can be given as UO22+>Zn2+>Ni2+.The presented work is devoted to the development of synthesis methods for novel 2-[(3-aminoalkyl-(alkaryl-, aryl-))-1H-1,2,4-triazolo]anilines. Abovementioned compounds were obtained via hydrazinolysis (Ing-Manske procedure) and acid hydrolysis of corresponding N -acylated([1,2,4]triazolo[1,5-c]quinazolin-2-yl)alkyl-(alkaryl-, aryl-)amines. compound library chemical The regioselectivity of hydrazinolysis and hydrolysis were established. The features of spectral characteristics werestudied and discussed. Characteristic patterns of protons signals splitting in 1H NMR of the synthesized compounds were established. The effect of the synthesized compounds on the pentylenetetrazol seizures was studied. It was found that according to some indicators, anticonvulsant activity of 2-[(3-aminoalkyl-(alkaryl-, aryl-))-1H-1,2,4-triazolo]anilines superior or comparable with effect of the reference drug "Lamotrigine". It is a valid argument for their further structural modification, in-depth study of activity mechanisms and further study of anticonvulsant activity on other experimental seizures models.Two new platinum(II) complexes, namely [PtCl(sac)(COD)] (1) and [Pt(sac)2(COD)] (2) (sac = saccharinate and COD = 1,5-cyclooctadiene), were synthesized and characterized by elemental analysis, IR, NMR, ESI-MS spectroscopic and thermal analysis (TG/DTA) methods. The platinum(II) complexes were prepared from the reaction of [PtCl2(COD)] with Na(sac)•2H2O. The addition of the sac ligand resulted in the replacement of 1 and 2 chlorido ligands in [PtCl2(COD)] to yield 1 and 2, respectively. The structures of the complexes were determined by single crystal X-ray diffraction and showed a distorted square planar coordination geometry around platinum(II). COD acted as a π-donor ligand, while sac was N -coordinated in both complexes. The TG/DTA data indicated that both complexes were thermally stable up to 220 °C in air and their thermal decompositions yielded Pt as a final product. Complexes 1 and 2 were also designed as possible precursors to synthesize new mixed-ligand platinum(II) sac complexes in a one-pot reaction.In this study, we reported the synthesis of a new tribranched macromolecule liquid crystal with triazine in the centre. The central triazine core is bonded via sequences of Sonigashira coupling to 3 triazine unites through acetylenic bridges. The triazines at the periphery are substituted with 2 chiral citronellyloxy side groups. The salt of the resulting star-shaped macromolecule, which was oily at room temperature, with 4-dodecyloxybenzoic acid at 11 ratio exhibited a Smectic C (SmC) mesophase. The liquid crystalline properties of organic salt were investigated using DSC (differential scanning calorimetry) and POM (polarizing optical microscopy).