Mahoneydixon6750
This paper presents a study of the effect of high service temperature (near or beyond glass transition temperature (Tg) of structural epoxy adhesive) on the behavior of near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP)-strengthened reinforced concrete (RC) beams. The study includes experimental work as well as analytical and numerical analysis. To this end, fourteen beams have been tested up to failure in two different series. In series 1, specimens with three different CFRP areas have been tested at two different temperatures (i.e., 20 and 40 °C). In series 2, and with the aim of evaluating the effect of higher temperatures, only one CFRP area was tested under four different temperatures (i.e., 20, 60, 70, and 85 °C). Experimental results are evaluated in terms of load-deflections, failure modes, and bond performance. Furthermore, the experimental load-deflection curves are satisfactorily compared to both analytical predictions and finite element (FE) numerical simulations. In both cases, shrinkage and temperature effects on the short-term response of flexural elements have been accounted for. No significant reduction in stiffness and ultimate load was observed for specimens being tested up to 60 °C (in the range of epoxy Tg), showing FRP rupture failure in all of them. For specimens under 70 and 85 °C, the failure mode changed from FRP rupture to FRP end debonding and concrete crushing, respectively.Ascospores of Talaromyces.macrosporus belong to the most stress resistant eukaryotic cells and show a constitutive dormancy, i.e., no germination occurs in the presence of rich growth medium. Only an extreme trigger as very high temperature or pressure is able to evoke synchronized germination. In this study, several changes within the thick cell wall of these cells are observed after a heat treatment (i.) a change in its structure as shown with EPR and X-ray diffraction; (ii.) a release of an abundant protein into the supernatant, which is proportional to the extent of heat activation; (iii.) a change in the permeability of the cell wall as judged by fluorescence studies in which staining of the interior of the cell wall correlates with germination of individual ascospores. The gene encoding the protein, dubbed ICARUS, was studied in detail and was expressed under growth conditions that showed intense ascomata (fruit body) and ascospore formation. It encodes a small 7-14 kD protein. Blast search exhibits that different Talaromyces species show a similar sequence, indicating that the protein also occurs in other species of the genus. Deletion strains show delayed ascomata formation, release of pigments into the growth medium, higher permeability of the cell wall and a markedly shorter heat activation needed for activation. Further, wild type ascospores are more heat-resistant. All these observations suggest that the protein plays a role in dormancy and is related to the structure and permeability of the ascospore cell wall. However, more research on this topic is needed to study constitutive dormancy in other fungal species that form stress-resistant ascospores.Milk is an important dietary requirement for many populations due to its high nutritional value. However, increased demand has also made it prone to fraudulent activity. find more In this sense, scientists have sought to develop simple, low-cost, and portable techniques to achieve quality control of milk in industry and farms as well. This work proposes a new instrumentation system based on acoustic propagation and advanced signal processing techniques to identify milk adulteration by industrial contaminants. A pair of transmitter-receiver low-cost piezoelectric transducers, configured in a pitch-catch mode, propagated acoustic waves in the bovine milk samples contaminated with 0.5% of sodium bicarbonate, urea, and hydrogen peroxide. Signal processing approaches such as chromatic technique and statistical indexes like the correlation coefficient, Euclidian norm and cross-correlation square difference were applied to identify the contaminants. According to the presented results, CCSD and RMSD metrics presented more effectiveness to perform the identification of milk contaminants. However, CCSD was 2.28 × 105 more sensitivity to distinguish adulteration in relation to RMSD. For chromatic clustering technique, the major selectivity was observed between the contamination performed by sodium bicarbonate and urea. Therefore, results indicate that the proposed approach can be an effective and quick alternative to assess the milk condition and classify its contaminants.Recent research suggests people typically "give up" pursuing their New Year resolutions within the first month. The present study investigated goal features proposed to be implicated in promoting both mental wellbeing and sustained New Year resolution pursuit. Australian and UK participants (n = 182) took part in an online longitudinal study, including four timepoints over a two-month period. At baseline, participants listed the New Year resolution to which they were most committed, and completed self-report measures to assess mental wellbeing, goal flexibility and tenacity. At the follow-up surveys, participants completed the wellbeing measure and their New Year resolution commitment, effort and stickability. As predicted, flexibility predicted wellbeing across time, however, tenacity did not. Counter to prediction, neither flexibility nor tenacity reported at baseline predicted "sticking" with one's New Year resolution. The predicted interaction between flexibility and tenacity was not significant. New Year resolutions focused predominantly on "diet" and "exercise" were predominantly the same resolutions previously pursued and tended to be relatively abstract. Although goal flexibility predicted greater wellbeing, the findings overall tend to support the view that people are not particularly good at sticking with their New Year resolutions. Implications of the findings are discussed.Mechanical properties of corn grains are of key importance in a design of processing machines whose energy demand depends on these properties. The aim of this study is to determine the selected mechanical properties of corn grains and the rupture energy. The research problem was formulated as questions (1) How much force and energy is needed to induce a rupture of corn grain maintaining good quality of the product of processing (mixing, grinding transport)? (2) Can empirical distributions of the studied physical-mechanical properties be described by means of probability distributions provided by the literature? (3) Is there a relationship between the corn grain size and the selected mechanical properties, as well as rupture energy? In order to achieve the goals, the selected physical properties (size, volume) of corn grains have been distinguished and a static compression test has been carried out on an Instron 5966 testing machine. The results indicate a significant scatter of the results in terms of size, grain shape, forces, energy, and deformation corresponding to the point of inflection, bioyiled point, and rupture point.