Magnussonwhalen7556

Z Iurium Wiki

Polycyclic aromatic hydrocarbons (PAHs) commonly coexist in contaminated sites, posing a significant threat to ecosystem. Strains that degrade a wide range of substrates play important roles in bioremediation of contaminated environment. In this study, we reveal that Pseudomonas brassicacearum MPDS was able to remove 31.1% naphthalene of 500 mg/kg from soil within 2 d, while its relative abundance decreased significantly on Day 20, indicating its applicable potential in soil remediation. In addition to naphthalene, dibenzofuran, dibenzothiophene, and fluorene as reported previously, strain MPDS is able to degrade carbazole, phenanthrene, pyrene, and 2-bromonaphthalene. Moreover, NahA from strain MPDS has multi-substrate catalytic capacities on naphthalene, dibenzofuran, dibenzothiophene, phenanthrene, and 2-bromonaphthalene into dihydrodiols, while converts fluorene and carbazole into monohydroxy compounds according to GC-MS analysis. This study provides further insights into the exploration of soil remediation by strain MPDS and the mining of enzymes involved in the degradation of PAHs.The demands on novel and sustainable techniques for vegetable waste (VW) valorization continues to increase during the past few decades due to the growing waste production under the flourishing vegetable industries. In this study, Chinese cabbage residues were hydrothermal carbonization (HTC) at 180, 200, 220 and 240 °C for 2 to 6 h to explore the impacts of process parameters on the characteristics of hydrochars and hydrolysates and their feasibility in sustainable agriculture. Results indicated that hydrothermal temperature had a greater impact on cabbage residue hydrolysis than the residence time. With the rising reaction severity, hydrochars became more alkaline with higher amount of ash and carbon (C), while the pH and dissolved organic nitrogen (DON) and NH4+-N in the hydrolysate were gradually reduced. MST-312 The thermogravimetric analysis (TG-DTG) indicated that organic constitutions in the feedstock went through incomplete decomposition. Although the recalcitrance index (R50) steadily increased through HTC (0.37-0.46), hydrochars were unstable and would not applicable for carbon sequestration. Furthermore, hydrochars and hydrolysate would be optimal media for plants seedling and growth for the abundant nutrients and dissolved organic compounds but reduced phytotoxicity. In conclusion, these results showed that HTC is highly applicable for vegetable waste management for sustainable agriculture.To clarify the spatial patterns of disease burden caused by toxic metals in fine particulate matter (PM2.5) across China, annual concentration levels of typical toxic metals in PM2.5 over 60 cities of China were retrieved. Then, potential years of life lost (PYLL) attributable to toxic metal (As, Cd, Cr (VI), Mn, and Ni) exposure was calculated from health risk assessments and lifetable estimates. The results show that Cr(VI) and As were the most polluted metals and greatly exceeded the recommended annual values in the National Ambient Air Quality Standard of China. PYLL for each death (mean ± standard deviation) of 19.8 ± 4.5 years was observed for lung cancer, followed closely by COPD and pneumonia. Furthermore, the PYLL rate (years per 100,000 people) attributable to exposure to these toxic metals was 457 (male 505, female 402) years for different cities; therein, Cr(VI) contributed the highest PYLL among these toxic metals, with a proportion of 72.7% (male 75.3%, female 69.5%), followed by As of 16.4% (male 13.8%, female 19.8%). The concentration level and PYLL both showed large spatial variability, of which the top-ranking cities were observed to be affected by well-developed metal-related industries and coal-powered industrial sectors.Water browning or brownification refers to increasing water color, often related to increasing dissolved organic matter (DOM) and carbon (DOC) content in freshwaters. Browning has been recognized as a significant physicochemical phenomenon altering boreal lakes, but our understanding of its ecological consequences in different freshwater habitats and regions is limited. Here, we review the consequences of browning on different freshwater habitats, food webs and aquatic-terrestrial habitat coupling. We examine global trends of browning and DOM/DOC, and the use of remote sensing as a tool to investigate browning from local to global scales. Studies have focused on lakes and rivers while seldom addressing effects at the catchment scale. Other freshwater habitats such as small and temporary waterbodies have been overlooked, making the study of the entire network of the catchment incomplete. While past research investigated the response of primary producers, aquatic invertebrates and fishes, the effects of browning on macrophytes, invasive species, and food webs have been understudied. Research has focused on freshwater habitats without considering the fluxes between aquatic and terrestrial habitats. We highlight the importance of understanding how the changes in one habitat may cascade to another. Browning is a broader phenomenon than the heretofore concentration on the boreal region. Overall, we propose that future studies improve the ecological understanding of browning through the following research actions 1) increasing our knowledge of ecological processes of browning in other wetland types than lakes and rivers, 2) assessing the impact of browning on aquatic food webs at multiple scales, 3) examining the effects of browning on aquatic-terrestrial habitat coupling, 4) expanding our knowledge of browning from the local to global scale, and 5) using remote sensing to examine browning and its ecological consequences.Fluctuations in organic loading rate are frequently experienced in practical-scale anaerobic digestion systems. These impose shocks to the microbiome leading to process instability and failure. This study elucidated the short-term changes in biochemical pathways and the contributions of microbial groups involved in anaerobic digestion with varying organic load shocks. A mixture of starch and hipolypeptone corresponding to a carbon-to‑nitrogen ratio of 25 was used as substrate. Batch vial reactors were run using acclimatized sludge fed with organic load varying from 0 to 5 g VS/L. Methane yield decreased with increasing organic load. The microbiome alpha diversity represented as the number of operational taxonomic units (OTUs) and the Shannon index both decreased with organic load indicating microbiome specialization. The biochemical pathways predicted using PICRUSt2 were analyzed along with the corresponding contributions of microbial groups leading to a proposed pathway of substrate utilization. Genus Trichococcus (order Lactobacillales) increased in contribution to starch degradation pathways with increase in organic load while genus Macellibacteroides (order Bacteroidales) was prominent in contribution to bacterial anaerobic digestion pathways. Strictly acetoclastic Methanosaeta increased in prominence over hydrogenotrophic Methanolinea with increase in organic load. Results from this study provide better understanding of how anaerobic digesters respond to organic load shocks.Limited information is known about organophosphate esters (OPEs) in sediments of the Dong Nai River System (DNRS) in Vietnam and the influences of complex hydro-sedimentary dynamics on their fate. In this study, 48 surface sediment samples were collected from the Dong Nai-Soai Rap River and its tributary Vam Co River for the determination of 11 target OPEs, together with grain size and total organic carbon (TOC). The total concentrations of OPEs were in the range of 39.4 ng/g dw-373 ng/g dw (mean 128 ng/g dw), and tris(1-chloro-2-propyl) phosphate (TCPP) was the predominant one with an average contribution of 81%, followed by tri-n-butyl phosphate (TNBP), tris(2-ethylhexyl) phosphate (TEHP). The composition profiles of OPEs at different locations of the DNRS showed no significant differences (p > 0.05). In addition, the distribution of OPEs had been influenced by both human activities and the fluvial-tidal interactions. The highly frequent and various human activities in Ho Chi Minh City (HCMC) leaded to the highest total concentration of OPEs in the midstream site. Based on our dataset, TOC content and grain size of sediments had significant correlation with certain OPEs (p less then 0.05), and sediments with higher TOC content and finer grain size in the DNRS were more likely to be deposited in the downstream reach, contributing to the estuary of the DNRS was identified as another hotspot with the second highest concentration of OPEs. Furthermore, the distribution of OPEs in the transects had distinct characteristics, which reflected the joint influence of the human activities and fluvial-tidal interaction as well. However, the mechanism of their influence needed further investigation.The goal of this study is to estimate the potential risk of exposure to urban green infrastructure by calculating and improving of AIROT index, adding meteorological factors as wind direction and updating the index to be more accurate for smaller urban green areas. To achieve this objective, BIM methodology has been applied by creating a 3D BIM model from the reality capture of a street with LiDAR. The BIM model contains the parametric data needed to apply AIROT index and it allows to map results in a graphic environmental sustainability study. The importance of location of green infrastructure is one of main conclusions obtained in order to minimize aerobiological risks in future new buildings or even in maintenance tasks of urban green infrastructure. A valuable result obtained from the developed methodology are walk simulations in the 3D model with the aim to identify high risk of potential exposure of urban green infrastructure with allergenic interest for allergic patients in order to supply health itineraries of pedestrians in a proposal of Smart City.Emissions of various heavy metals (i.e. Hg, As, Cd, Cr and Pb) have emerged as one of the most tremendous pressures on the socio-economic and environmental systems. The pressures caused by such heavy metals would be getting intensified if no adequate and timely solution is implemented, especially because their emissions are associated with economic activities (i.e. regional trade and household consumption). In this study, emissions of various heavy metals derived from regional trade as well as rural and urban household consumption are quantified to identify the critical regions and significant household consumption. In order to detail the impacts of household consumption on such emissions, rural and urban household are divided respectively into five and seven groups with hierarchic income from poorest to richest. The Hg, As, Cd, Cr and Pb emissions caused by intermediate commodity consumption are 1172.86, 2607.57, 23.28, 57.49 and 85.16 tons, respectively. Among them, such emissions induced by self-consumption are 662.95, 1539.34, 12.28, 33.10 and 43.49 tons. Shandong, Guangdong and Jiangsu are identified for high self-emissions due to their advanced economy and rare resources. On the contrast, Hebei and Shanxi with abundant resources are the critical regions for the high transfer-out emissions. Moreover, emissions of multiple heavy metals are inequal due to the variations of rural and urban income groups. Emissions caused by R5 are identified through stepwise cluster analysis for its significant difference in compare with other income groups. It is verified that the main difference of emissions in economically developed regions are caused by rural income groups, while urban income groups are the critical reason for the disaggregation of emissions in less developed regions. Policies should be further implemented based on the regional similarity and income-group inequality.

Autoři článku: Magnussonwhalen7556 (Kearney Atkinson)