Magnussenmahoney5447
4-2.7 folds enhanced maximal current at substrate saturation (Imax) values, 1.2-1.4 folds increased sensitivity and twice wide linearity compared with control bioelectrodes. The sensitivity of the developed CFs-based bioelectrodes was improved compared with the laccase-bound electrodes, described in literature. The developed biosensor was tested for catechol analysis in the real communal wastewater sample. Mesoporous material SBA-15 was functionalized with different polar and nonpolar groups 3-aminopropyl, (SBA-15-NH2), 3-isocyanatopropyl (SBA-15-NCO), 3-mercaptopropyl (SBA-15-SH), methyl (SBA-15-CH3) and phenyl (SBA-15-Ph). The resulting surface grafted materials were investigated as matrices for controlled drug delivery. Anticancer agent, pemetrexed (disodium pemetrexed heptahydrate) was selected as a model drug and loaded in the unmodified and functionalized SBA-15 materials. Materials were characterized by elemental analysis, infrared spectroscopy, transmission electron microscopy, nitrogen adsorption/desorption analysis, small angle X-ray scattering, powder X-ray diffraction, solid state NMR spectroscopy and thermogravimetry. It was shown that surface modification has an impact on both encapsulated drug amount and release properties. Release experiments were performed into two media with different pH simulated body fluid (pH = 7.4) and simulated gastric fluid (pH = 2). In general, the effect of pH was refle mesoporous silica material by grafted polar/nonpolar groups may significantly affect the compatibility of this material with cells, drug release from this material and subsequent biological activity of PEM. Prolonged healing is a severe problem for elderly and diabetic patients. Impaired angiogenesis, stem cell differentiation, and migration have been shown to delay wound healing. The chemokine stromal cell-derived factor-1 (SDF-1) plays an essential role in recruiting cells to wound sites and is suggested to be a candidate for tissue engineering. In this study, chitosan (CHI) scaffolds were crosslinked with nontoxic genipin (Gp) and further heparinized for SDF-1 immobilization. Then, the structures were evaluated for their physicochemical properties (porosity, swelling ratio, and water vapor transmission rate (WVTR)). The interaction between SDF-1 and heparin could sustain SDF-1 release, which has been shown to enhance human umbilical vein endothelial cell (HUVEC) 2D/3D migration. The investigation of the wound-healing activity of the SDF-1-loaded CHI scaffolds revealed a better wound recovery rate in vivo in healthy and streptozotocin-induced diabetic Sprague-Dawley (SD) rats. The histological analysis illustrated that the local of SDF-1 treatment scaffold at the wound site enhanced neovascularization. The wounds treated with SDF-1 scaffolds also exhibited higher vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β) expression in Western blot assays. Based on the wound-healing activity and beneficial characteristics, the SDF-1-loaded CHI scaffold demonstrates potential as a material for treating skin wounds. Fluorescent nanomaterials have gained momentum due to their specific properties and promising applications in various fields. Molybdenum disulfide quantum dots (MoS2 QDs) are emerging as a new class of fluorescent nanomaterials that have generated tremendous research interests due to their unique optical properties and good biocompatibility. In this review, we firstly present an overview of the significant advances of MoS2 QDs in synthetic strategies including top-down and bottom-up approaches, followed by discussing their distinctive properties. Then, the detailed biological applications of MoS2 QDs are provided. Finally, the challenges and perspectives of MoS2 QDs based materials are indicated as well. BACKGROUND Polyamidoamine (PAMAM) dendrimers are a new class of monodisperse polymers that are used for drug delivery in systemic administrations. The influence of PAMAM dendrimers on components of the blood coagulation system has been extensively studied, but their effect on the activity of the fibrinolysis system has not been studied to date. METHODS The effect of cationic (G1-G3) and anionic (G1.5-G3.5) PAMAM dendrimers on the conformation and function of the main components of the coagulation and fibrinolysis systems was comparatively studied. Changes in overall plasma hemostatic potential, thrombin generation, prothrombin time, thrombin and tPA activities, the fluorescence of fibrinogen and plasminogen, zeta potential, polymerization of fibrinogen, and activation of plasminogen were analyzed to assess coagulofibrinolytic mechanisms of influence of the charge of the dendrimers. RESULTS Cationic dendrimers increased prothrombin time, suppressed thrombin generation in plasma, and changed the conformation and coagulability of fibrinogen, while anionic dendrimers did not have such effects. Anionic dendrimers slightly reduced tPA activity and altered plasminogen conformation much more strongly than the cationic dendrimers. Plasminogen activation by tPA was strongly inhibited by anionic dendrimers and weakly stimulated by cationic dendrimers. All these effects were enhanced with increasing generation and concentration of the dendrimers. CONCLUSIONS PAMAM-NH2 dendrimers inhibit the extrinsic activation pathway of the coagulation system and alter the conformation and function of fibrinogen. PAMAM-COOH dendrimers change the conformation of plasminogen and inhibit its activation by tPA. This study gives new insight into the effect of anionic PAMAM dendrimers on the activity of the fibrinolytic system. For intravenous applications, the antifibrinolytic effect of anionic PAMAM dendrimers of generation ≥G2.5 should be considered. Selective laser melting (SLM) titanium alloys require surface modification to achieve early bone-bonding. This study investigated the effects of solution and heat treatment to induce the sustained release of strontium (Sr) ions from SLM Ti6Al4V implants (Sr-S64). The results were compared with a control group comprising an untreated surface [SLM pure titanium (STi) and SLM Ti6Al4V (S64)] and a treated surface to induce the release of calcium (Ca) ions from SLM Ti6Al4V (Ca-S64). The surface-treated materials showed homogenous nanoscale network formation on the original micro-topographical surface and formed bone-like apatite on the surface in a simulated body fluid within 3 days. In vitro evaluation using MC3T3-E1 cells showed that the cells were viable on Sr-S64 surface, and Sr-S64 enhanced cell adhesion-related and osteogenic differentiation-related genes expression. In vivo rabbit tibia model, Sr-S64 provided significantly greater bone-bonding strength and bone-implant contact area than those in controls (STi and S64) in the early phase (2-4 weeks) after implantation; however, there was no statistical difference between Ca-S64 and controls. In conclusion, Sr solution and heat treatment was a safe and effective method to enhance early bone-bonding ability of S-64 by improving the surface characteristics and sustained delivery for Sr. Curcumin (CUR) is a natural polyphenol present in the rhizomes of Curcuma longa and possesses diverse pharmacological effects, especially anti-carcinogenic effects against several types of cancers. Unfortunately, this novel compound has poor aqueous solubility and bioavailability that limit its pharmaceutical effects. The use of polymeric nanocapsules has been applied in order to overcome such problems. Thus, our present study aimed at developing two novel polymeric nanoparticles (NPs) systems that encapsulate either curcumin alone (CURN) or with piperine (CURPN), which acts as a glucuronidation inhibitor and increases the bioavailability of CUR. The NPs were successfully designed by self-assembled nanoprecipitation method and their characteristics were identified by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), and Zeta potential analysis. The drug release profiles of NPs were monitored under different pH, and their cytotoxic effects were assessed in vitro against Caco-2 cells and in vivo against dimethylhydrazine-induced colon cancer in mice. The FTIR and XRD analyses and SEM images showed amorphous and spherical shaped CURN and CURPN of 80-100 nm sized diameter. In vitro drug release study showed that pH triggered the maximum release of CUR in basic medium compared to acidic and neutral media, and following Higuchi model. CUR nanoencapsulation enhanced its physiochemical properties and drug loading and release. In vitro and in vivo studies showed that CUR NPs exerted selective and potential cytotoxic effects against colon cancer cells. The addition of piperine facilitated the encapsulation and drug loading of CUR. Thus, CUR nanoencapsulation enhanced the solubility and bioavailability of curcumin rendering it more effective against colon cancer. Asenapine maleate (ASPM) is an antipsychotic drug prescribed for the treatment of schizophrenia and bipolar disorder. ASPM possesses low oral bioavailability due to extensive hepatic metabolism. Therefore, RGD peptide conjugated liposomes loaded with ASPM were prepared to target Peyer's patches in the intestine which in-turn get access into intestinal lymphatic system thereby increasing the oral bioavailability of the drug. Liposomes were evaluated for size, zeta potential, differential scanning calorimetry (DSC), FTIR spectroscopy, X-ray diffraction (XRD), shape and morphology, in vitro drug release, cell line studies, everted intestinal uptake, pharmacodynamics, pharmacokinetics, tissue distribution, targetability and stability studies. In vitro drug release study showed the sustained release of drug from the formulations. Optimized liposomes (size less then 110 nm) showed greater permeability across the Caco2 + Raji B co-culture model in vitro and everted rat ileum ex vivo. Liposomes showed increase in bioavailability and high efficacy in reducing the L-DOPA-carbidopa induced locomotor count compared to plain drug. Liposomes also showed high concentration of drug in the brain after their oral administration. Imaging studies showed that RGD peptide conjugated liposomes were successful in targeting the Peyer's patches, both in vivo and ex vivo. The study successfully demonstrated the improved pharmacokinetics and efficacy profile of ASPM by using a ligand conjugated targeted liposomal system. Physical poly(vinyl alcohol) (PVA) hydrogels containing up to 3% Laponite RD (LRD) were obtained by freezing/thawing method. The structure and the morphology of PVA/LRD hydrogels were evaluated by ATR-FTIR and SEM measurements, respectively. The morphological analysis of the hydrogels revealed the formation of clay agglomerates and large size aggregates at LRD concentrations above 2.5%. Fumarate hydratase-IN-1 in vitro The rheological and mechanical properties of the PVA hydrogels in presence/absence of clay and their structural regeneration capacity after a large deformation were also investigated. The effect of LRD incorporation on the swelling behavior of the PVA hydrogels was discussed. The water vapor sorption capacity of PVA hydrogels decreases by clay addition. The analysis of in-vitro rifampicin release data indicated that the presence of a small amount of LRD into hydrogel affects the drug release mechanism. The antimicrobial activity of PVA hydrogels in presence/absence of LRD loaded with rifampicin against Staphylococcus aureus, Escherichia coli and Candida albicans was studied.