Maddoxblevins3094

Z Iurium Wiki

In addition, a trend of improved N remobilization efficiency and the N contribution of remobilized N to grain as a result of band application of NP(S) was observed. Among various NUE indices, internal N utilization efficiency (IE) exhibited the strongest, yet negative, correlation with GY, whereas IE was a function of the N harvest index.Brevilin A, which has anticancer activities against a range of cancers, is an abundant constituent of the medicinal herb Centipeda minima (L.) A. Braun & Asch, which has also been reported to have anticancer activity against breast cancer cells. However, the anticancer activities of C. minima and brevilin A against human gastric cancer have yet to be reported. In this study, we aimed to evaluate the cytotoxicity and molecular basis underlying the anticancer activities of extracts of C. minima (CMX) and brevilin A against human gastric cancer (AGS) cells. We deduced the potential targets and mechanisms underlying the anticancer activity of brevilin A based on a network pharmacology approach. CCND1, CDK4, and BCL2L1 were identified as the key anticancer genes targeted by brevilin A. Cytotoxicity analyses revealed that CMX and brevilin A reduced the viability of AGS cells to levels below 50% (9.73 ± 1.29 µg/mL and 54.69 ± 1.38 μM, respectively). Furthermore, Hoechst 33342, annexin V, and propidium iodide staining and western blot analyses revealed that CMX and brevilin A promoted a significant induction of apoptotic cell death by upregulating the expression of cleaved caspase-8 and cleaved caspase-3 and reducing the ratio of Bax to Bcl-2, which is partially consistent with the findings of our network pharmacology analysis. Collectively, our observations indicate that CMX and brevilin A are novel sources of herbal medicine with potential utility as effective agents for the treatment of gastric cancer.Drought stress is known as a major yield-limiting factor in crop production that threatens food security worldwide. Arbuscular mycorrhizal fungi (AMF) and titanium dioxide (TiO2) have shown to alleviate the effects of drought stress on plants, but information regarding their co-addition to minimize the effects of drought stress on plants is scant. Here, a two-year field experiment was conducted in 2019 and 2020 to evaluate the influence of different irrigation regimes and fertilizer sources on the EO quantity and quality of sage (Salvia officinalis L.). The experiment was laid out as a split plot arranged in a randomized complete block design with three replicates. The irrigation treatments were 25, 50, and 75% maximum allowable depletion (MAD) percentage of the soil available water as non-stress (MAD25), moderate (MAD50), and severe (MAD75) water stress, respectively. Subplots were four fertilizer sources including no-fertilizer control, TiO2 nanoparticles (100 mg L-1), AMF inoculation, and co-addition of Tisustainability of sage production, especially in drought conditions.Plant photosynthesis and biomass production are closely associated traits but critical to unfavorable environmental constraints such as salinity and drought. The relationships among stress tolerance, photosynthetic mechanisms, biomass and ethanol yield were assessed in Phragmites karka. The growth parameters, leaf gas exchange and chlorophyll fluorescence of P. karka were studied when irrigated with the control and 100 and 300 mM NaCl in a nutrient solution and water deficit conditions (drought, at 50% water holding capacity). The plant shoot fresh biomass was increased in the low NaCl concentration; however, it significantly declined in high salinity and drought. Interestingly the addition of low salinity increased the shoot biomass and ethanol yield. The number of tillers was increased at 100 mM NaCl in comparison to the control treatment. High salinity increased the photosynthetic performance, but there were no significant changes in drought-treated plants. The saturated irradiance (Is) for photosynthesis saline and arid areas and can therefore be used as a sustainable biofuel crop.Rice (Oryza sativa L.) is one of the main food crops for human survival, and its yield is often restricted by abiotic stresses. Drought and soil salinity are among the most damaging abiotic stresses affecting today's agriculture. Given the importance of abscisic acid (ABA) in plant growth and abiotic stress responses, it is very important to identify new genes involved in ABA signal transduction. We screened a drought-inducing gene containing about 158 amino acid residues from the transcriptome library of rice exposed to drought treatment, and we found ABA-related cis-acting elements and multiple drought-stress-related cis-acting elements in its promoter sequence. The results of real-time PCR showed that OsMLP423 was strongly induced by drought and salt stresses. TP0184 The physiological and biochemical phenotype analysis of transgenic plants confirmed that overexpression of OsMLP423 enhanced the tolerance to drought and salt stresses in rice. The expression of OsMLP423-GFP fusion protein indicated that OsMLP423 was located in both the cell membrane system and nucleus. Compared with the wild type, the overexpressed OsMLP423 showed enhanced sensitivity to ABA. Physiological analyses showed that the overexpression of OsMLP423 may regulate the water loss efficiency and ABA-responsive gene expression of rice plants under drought and salt stresses, and it reduces membrane damage and the accumulation of reactive oxygen species. These results indicate that OsMLP423 is a positive regulator of drought and salinity tolerance in rice, governing the tolerance of rice to abiotic stresses through an ABA-dependent pathway. Therefore, this study provides a new insight into the physiological and molecular mechanisms of OsMLP423-mediated ABA signal transduction participating in drought and salt stresses.The peach (Prunus persica L.) is one of Tunisia's major commercial fruit crops and is considered one of the biggest water consumers of all crops. In warm and arid areas of southern Tunisia, irrigation is necessary to ensure orchard longevity and high yield and fruit quality. Nevertheless, under water-scarcity conditions and low water quality, water management should rely on efficient deficit irrigation strategies. In this study, sustained deficit irrigation (DI) and partial root-zone drying (PRD50) at 50% of crop evapotranspiration (ETc) were evaluated for their impact on the primary and secondary metabolites of the peach fruit of early cultivar Flordastar grown in the Tataouine region. A full irrigation (FI) treatment at 100%, etc., was used as a control treatment. Color, dry-matter content, firmness, organic acids, sugars, phenolic compounds, vitamin C, β-carotene and minerals were assessed on harvested mature fruits. Dry-matter content and firmness increased significantly under DI and PRD50 (13% and 15.5%)t of reduced irrigation on bioactive-fruit quality attributes and the suitability of PRD50 and DI as tools for irrigation management in arid areas of southern Tunisia, contributing to water-saving in orchards and the improvement of fruit commercial value.Aronia melanocarpa L. (black chokeberry), belonging to the Rosaceae family, contains high amounts of polyphenolics and therefore exhibits one of the highest antioxidant and anti-inflammatory activities among berry fruits. Chokeberries are used in the food industry for juice, nectar, and wine production and as colorants. We aimed to compare the phytochemical composition of three chokeberry juices commercially available in the local market as sources of beneficial phytochemicals. Using GC-MS and LC-MS/MS, we performed the identification and quantitation of polar compounds and polyphenolics. The concentrations of 13 amino acids, including 6 essential amino acids, 10 organic acids, 20 sugar alcohols and derivatives, 14 saccharides, 12 fatty acids and esters, and 38 polyphenols, were estimated. One of the analyzed juices had the highest polyphenolic content (5273.87 ± 63.16 µg/mL), possibly due to 2.9 times higher anthocyanin concentration compared to anthocyanins in other tested juices. This study provides new data concerning phytochemical composition in terms of amino acids, organic acids, sugar acids, fatty acids and their esters, and polyphenols as phytocomponents of commercially available chokeberry juices. Results show that after all processing techniques and possibly different plant growth conditions, chokeberry juices are a valuable source of health-promoting phytochemicals such as phenolic acids, pro-anthocyanins, and anthocyanins, thus considering them as functional foods. We demonstrated a diversity of the active substances in bioactive foods marketed as "same"; therefore, the standardized therapeutic effect could be expected only by the utilization of food supplements with guaranteed constant content.Crop resistance to environmental stress is a major issue. The globally increasing land degradation and desertification enhance the demand on management practices to balance both food and environmental objectives, including strategies that tighten nutrient cycles and maintain yields. Agriculture needs to provide, among other things, future additional ecosystem services, such as water quantity and quality, runoff control, soil fertility maintenance, carbon storage, climate regulation, and biodiversity. Numerous research projects have focused on the food-soil-climate nexus, and results were summarized in several reviews during the last decades. Based on this impressive piece of information, we have selected only a few aspects with the intention of studying plant-soil interactions and methods for optimization. In the short term, the use of soil amendments is currently attracting great interest to cover the current demand in agriculture. We will discuss the impact of biochar at water shortage, and plant growth pro as needless compounds and structures. Furthermore, in this context, we will show that autophagy can be a useful goal of breeding measures, since the recycling of building blocks helps the cells to overcome a period of imbalanced substrate supply during stress adjustment.Persian (Common) walnut (Juglans regia L.) is a famous fruit tree species valued for its nutritious nuts and high-quality wood. Although walnut is widely distributed and plays an important role in the economy and culture of Pakistan, the genetic diversity and structure of its populations in the country remains poorly understood. Therefore, using 31 nuclear microsatellites, we assessed the genetic diversity and population structure of 12 walnut populations sampled across Pakistan. We also implemented the geostatistical IDW technique in ArcGIS to reveal "hotspots" of genetic diversity. Generally, the studied populations registered relatively low indices of genetic diversity (NA = 3.839, HO = 0.558, UHE = 0.580), and eight populations had positive inbreeding coefficient (FIS) values. Low among-population differentiation was indicated by AMOVA, pairwise FST and DC. STRUCTURE, PCoA and neighbor joining (NJ) analysis revealed a general lack of clear clustering in the populations except that one population in Upper Dir was clearly genetically distinct from the rest. Furthermore, the Mantel test showed no correlation between the geographic and genetic distance (r = 0.14, p = 0.22), while barrier analysis suggested three statistically significant genetic barriers. Finally, the spatial interpolation results indicated that populations in Ziarat, Kashmir, Dir, Swat, Chitral, and upper Dir had high intrapopulation genetic diversity, suggesting the need to conserve populations in those areas. The results from this study will be important for future breeding improvement and conservation of walnuts in Pakistan.

Autoři článku: Maddoxblevins3094 (Byskov Kirkeby)