Macleancallahan4357

Z Iurium Wiki

the rehabilitation performance in post-operative subjects.Background Achieving clear visibility through a windshield is one of the crucial factors in manufacturing a safe and comfortable vehicle. The optic flow (OF) through the windshield has been reported to divert attention and could impair visibility. Although a growing number of behavioral and neuroimaging studies have assessed drivers' attention in various driving scenarios, there is still little evidence of a relationship between OF, windshield shape, and driver's attentional efficacy. The purpose of this research was to examine this relationship. Methods First, we quantified the OF across the windshield in a simulated driving scenario with either of two types of the windshield (a tilted or vertical pillar) at different speeds (60 km/h or 160 km/h) and found more upward OF along the tilted pillar than along the vertical pillar. Therefore, we hypothesized that the predominance of upward OF around the windshield along a tilted pillar could distract a driver and that we could observe the corresponding neural actiof this study highlight the value of a cognitive neuroscientific approach to research and development in the motor vehicle manufacturing industry.Background Unilateral spatial neglectis an attention disorder frequently occurring after a right-hemispheric stroke. Neglect results in a reduction in qualityof life and performance in activities of daily living. With current technical improvements in virtual reality (VR) technology, trainingwith stereoscopic head-mounted displays (HMD) has become a promising new approach for the assessment and the rehabilitation of neglect. The focus of this pilot study was to develop and evaluate a simple visual search task in VR for HMD. The VR system was tested regarding feasibility, acceptance, and potential adverse effects in healthy controls and right-hemispheric stroke patients with and without neglect. Methods The VR system consisted of two main components, a head-mounted display to present the virtual environment, and a hand-held controller for the interaction with the latter. The task followed the rationale of diagnostic paper-pencil cancellation tasks; i.e., the participants were asked to search targets among distke any significant negative effects, both for healthy controls and for stroke patients. Findings for task performance show that the ability of the VR cancellation to detect neglect in stroke patients is similar to paper-pencil cancellation tasks.Repetitive sensory stimulation of the fingertip induces Hebbian plasticity in the sensorimotor cortex that benefits the tactile and motor behavior of the hand in healthy younger adults, older adults, and patients. To use this method outside the laboratory, robust and portable stimulation systems are needed that allow prolonged stimulation phases over several hours without compromising on signal intensity or personal mobility. Here, we introduce two stimulation gloves that apply finger- and frequency-specific mechanical stimulation to individual fingertips over prolonged periods. The stimulators are built into commercially available cotton gloves and apply stimulation either via loudspeaker membranes or via linear resonant actuators (LRAs). We tested the efficiency of both gloves to induce Hebbian plasticity in younger adults by using two established measures of tactile performance, the grating orientation task (GOT), and the two-point discrimination task (2PDT). Both tests were performed before and after 3 h of sensory finger stimulation using one of either glove system. As a control condition, a non-stimulated finger was tested in both tasks before and after stimulation. The results show no significant effect of sensory stimulation on GOT thresholds, but a significant decrease in the 2PDT thresholds after compared to before the training at the stimulated finger only. The loudspeaker membrane improved performance in the 2PDT in 10/16 participants, whereas the LRA improved performance in the 2PDT in 13/16 participants. Stimulation gloves with built-in modules may be used in future larger-scale cohort studies on sensorimotor plasticity, rehabilitation, and learning.Sensorimotor communication is a form of communication instantiated through body movements that are guided by both instrumental, goal-directed intentions and communicative, social intentions. Depending on the social interaction context, sensorimotor communication can serve different functions. This article aims to disentangle three of these functions (a) an informing function of body movements, to highlight action intentions for an observer; (b) a coordinating function of body movements, to facilitate real-time action prediction in joint action; and (c) a performing function of body movements, to elicit emotional or aesthetic experiences in an audience. We provide examples of research addressing these different functions as well as some influencing factors, relating to individual differences, task characteristics, and situational demands. NF-κB inhibitor The article concludes by discussing the benefits of a closer dialog between separate lines of research on sensorimotor communication across different social contexts.There is debate in the literature regarding how single-digit arithmetic fluency is achieved over development. While the Fact-retrieval hypothesis suggests that with practice, children shift from quantity-based procedures to verbally retrieving arithmetic problems from long-term memory, the Schema-based hypothesis claims that problems are solved through quantity-based procedures and that practice leads to these procedures becoming more automatic. To test these hypotheses, a sample of 46 typically developing children underwent functional magnetic resonance imaging (fMRI) when they were 11 years old (time 1), and 2 years later (time 2). We independently defined regions of interest (ROIs) involved in verbal and quantity processing using rhyming and numerosity judgment localizer tasks, respectively. The verbal ROIs consisted of left middle/superior temporal gyri (MTG/STG) and left inferior frontal gyrus (IFG), whereas the quantity ROIs consisted of bilateral inferior/superior parietal lobules (IPL/SPL) and bilaterer time for large subtraction problems in verbal regions. The greater parietal problem size effect at time 1 and the reduction in activation over time for the improvers in parietal and frontal regions implicated in quantity processing is consistent with the Schema-based hypothesis arguing for more automatic procedures with increasing skill. The lack of a problem size effect at time 1 and the overall decrease in verbal regions, regardless of improvement, is inconsistent with the Fact-retrieval hypothesis.Reduced selective voluntary motor control (SVMC) is a primary impairment due to corticospinal tract (CST) injury in spastic cerebral palsy (CP). There are few studies of brain metabolism in CP and none have examined brain metabolism during a motor task. Nine children with bilateral spastic CP [Age 6-11 years, Gross Motor Function Classification System (GMFCS) Levels II-V] completed this study. SVMC was evaluated using Selective Control Assessment of the Lower Extremity (SCALE) ranging from 0 (absent) to 10 (normal). Brain metabolism was measured using positron emission tomography (PET) scanning in association with a selective ankle motor task. Whole brain activation maps as well as ROI averaged metabolic activity were correlated with SCALE scores. The contralateral sensorimotor and superior parietal cortex were positively correlated with SCALE scores (p less then 0.0005). In contrast, a negative correlation of metabolic activity with SCALE was found in the cerebellum (p less then 0.0005). Subsequent ROI analysis showed that both ipsilateral and contralateral cerebellar metabolism correlated with SCALE but the relationship for the ipsilateral cerebellum was stronger (R 2 = 0.80, p less then 0.001 vs. R 2 = 0.46, p = 0.045). Decreased cortical and increased cerebellar activation in children with less SVMC may be related to task difficulty, activation of new motor learning paradigms in the cerebellum and potential engagement of alternative motor systems when CSTs are focally damaged. These results support SCALE as a clinical correlate of neurological impairment.Empathy influences how we perceive, understand, and interact with our social environment. Previous studies suggested a network of different brain regions as a neural substrate for empathy, including, in particular, insula and anterior cingulate cortex (ACC). In addition, a contribution of the somatosensory cortices for this empathy related network has been suggested. This is remarkable, given that other recent studies have revealed a role for the somatosensory cortex in various social tasks. For example, in experiments using tactile priming, incidental haptic sensations are found to influence judgment recommendations. Here, we aimed to test if this engagement of the somatosensory cortices during tactile priming can be predicted by the participant's empathy personality traits. We assessed participant's empathy and personality traits by means of the Interpersonal Reactivity Index (IRI) and NEO-FFI and tested whether trait empathy is associated with the tactile priming effect in social judgments. Results revealed that empathy predicted the tactile priming effect negatively. This was accompanied by a reduced engagement of the somatosensory cortex, which has been shown to be associated with the priming effect. We conclude that empathy seems to protect people from tactile priming effects.Do physical and psychosocial stressors interact to increase stress in ways not explainable by the stressors alone? A preliminary study compared participants' stress response while subjected to a physical stressor (reduced or full physical load) and a predetermined social stressor (confronted by calm or aggressive behavior). Salivary cortisol samples measured endocrine stress. Heart rate variability (HRV) and electrodermal activity (EDA) measured autonomic stress. Perceived stress was measured via discomfort and stress state surveys. Participants with a heavier load reported increased distress and discomfort. Encountering an aggressive individual increased endocrine stress, distress levels, and perceived discomfort. Higher autonomic stress and discomfort were found in participants with heavier physical load and aggressive individuals. The results suggest a relationship where physical load increases the stressfulness of aggressive behavior in ways not explainable by the effects of the stressors alone. Future research is needed to confirm this investigation's findings.Functional magnetic resonance imaging (fMRI) allowed the spatial characterization of the resting-state verbal language network (vLN). While other resting-state networks (RSNs) were matched with their electrophysiological equivalents at rest and could be spectrally defined, such correspondence is lacking for the vLN. This magnetoencephalography (MEG) study aimed at defining the spatio-spectral characteristics of the neuromagnetic intrinsic functional architecture of the vLN. Neuromagnetic activity was recorded at rest in 100 right-handed healthy adults (age range 18-41 years). Band-limited power envelope correlations were performed within and across frequency bands (θ, α, β, and low γ) from a seed region placed in the left Broca's area, using static orthogonalization as leakage correction. K-means clustering was used to segregate spatio-spectral clusters of resting-state functional connectivity (rsFC). Remarkably, unlike other RSNs, within-frequency long-range rsFC from the left Broca's area was not driven by one main carrying frequency but was characterized by a specific spatio-spectral pattern segregated along the ventral (predominantly θ and α) and dorsal (β and low-γ bands) vLN streams.

Autoři článku: Macleancallahan4357 (Bynum Gotfredsen)