Mackayrafferty0689
Chronic stress exposure impacts negatively in individuals leading to food addiction, overweight or obesity. Stress-genes and their translation products are responsible for the responses of humans to adverse environments. Alterations in stress-genes expression or protein function may induce behaviors as compulsive eating of high-energy containing food, which decreases stress-induced negative feelings. However, chronic stress is not assessed in Mexican population. We analyzed here the association between polymorphisms of CRH, CRHR2 and glucocorticoids (GR, NR3C1) receptor genes with food addiction and obesity and overweight in Mexican patients of a Nutrition Clinic. We recruited 508 individuals of both genders, who accepted to participate in the study at their first visit to the clinic, obtaining their fat mass percentage and a blood sample for the genetic analysis. Participants answered the Yale's food addiction scale and were subjected to a Trier social test, as an acute stressful stimulus. Pre and post-test saliva samples were obtained to evaluate cortisol levels and adrenal axis' response to the acute stress. The 63% of participants classified as stressed (S); 6.5% of normal-weight individuals showed food-addiction, whereas 63% of participants with food-addiction were also stressed. The fat mass percentage was greater in stress-addiction than in stressed non-addiction participants. Xevinapant manufacturer The best interaction model for obesity development risk comprehended the presence of polymorphisms of the three genes that in combination with food addiction increased the risk for developing obesity 2.8-4-fold. Thus, frequent stress exposure favors food-addiction, which along with genetic susceptibility seems to add up to Mexican obesity/overweight rates.The most effective measure to prevent or stop the spread of infectious diseases is the early identification and isolation of infected individuals through comprehensive screening. At present, in the COVID-19 pandemic, such screening is often limited to isolated regions as determined by local governments. Screening of potentially infectious individuals should be conducted through coordinated national or global unified actions. Our current research focuses on using resources to conduct comprehensive national and regional regular testing with a risk rate based, algorithmic guided, multiple-level, pooled testing strategy. Here, combining methodologies with mathematical logistic models, we present an analytic procedure of an overall plan for coordinating state, national, or global testing. The proposed plan includes three parts 1) organization, resource allocation, and distribution; 2) screening based on different risk levels and business types; and 3) algorithm guided, multiple level, continuously screening the entire population in a region. This strategy will overcome the false positive and negative results in the polymerase chain reaction (PCR) test and missing samples during initial tests. Based on our proposed protocol, the population screening of 300,000,000 in the US can be done weekly with between 15,000,000 and 6,000,000 test kits. The strategy can be used for population screening for current COVID-19 and any future severe infectious disease when drugs or vaccines are not available.Glyphosate is a systemic broad-spectrum herbicide that is by now the most extensively used herbicide in the world and has been the source for a still heated controversy about its harmful effects on human health and the environment. The different weighting of scientific studies has led to different attitudes in most countries towards appropriate handling and their regulatory authorities. Therefore, an in-depth analysis of the global research landscape on glyphosate is needed to provide the background for further decisions regarding appropriate and careful use, taking into account the different regional conditions. The present study is based on established bibliometric methodological tools and is extended by glyphosate-specific parameters. Chronological and geographical patterns are revealed to determine the incentives and intentions of international scientific efforts. Research output grew in line with the exponential growth in consumption, with the field of research becoming increasingly multidisciplinary ands in order to take into account all regional and social needs and aspects of glyphosate use.Perfluorooctanoic acid (PFOA) and its substitute GenX are toxic chemicals that are widespread in the aquatic environment. However, there is little information about their toxicity mechanisms to aquatic organisms. In this study, Chlorella pyrenoidosa (C. pyrenoidosa) was treated with two concentrations (100 ng L-1 and 100 μg L-1) of PFOA or GenX for 12 days. The results showed that these two concentrations of PFOA and GenX began to inhibit the growth of algae after 6 days of treatment, and the Chlorophyll content and photosynthetic activity of C. pyrenoidosa were also negatively affected by these two chemicals. The transcriptomic results indicated that most of the genes related to the photosynthetic metabolism of C. pyrenoidosa were down-regulated (in 100 ng L-1 treatment groups) on the 12th day. Besides, GenX and PFOA showed similar effects on algae photosynthesis including physical damage and metabolic disorders. According to this study, GenX might not be an ideal substitute for PFOA, and more attention should be paid on the management of emerging perfluoroalkyl substances.The Gowienica Miedwiańska catchment is a small agricultural catchment located in the NW of Poland draining into Lake Miedwie, on which a drinking water source for the city of Szczecin is located. The catchment is characterized by very rich soils. Subsequently, agriculture is intensive and this is thought to influence the poor water quality in the local area. Despite more than 20 years since first programmes of measures towards protection of water quality have been introduced into the catchment, these have not been produced the expected results, and the local farming community cites other sources such as poor sewage management rather that agricultural activity, as responsible for this problem. Evaluation of flow pathways in the catchment and identification of the areas responsible for the highest impact on local water quality was therefore conducted within the EU funded project Waterprotect. The aim of this study was to clarify sources of pollution precisely in space and time, in order to increase trust from stakeholders, so that targeted measures can be used effectively to improve water quality.