Mackaymcmillan9169
The total solid and volatile solid removal rates were 78.5% and 75% after 15 days, respectively. Acetic and butyrate acids were the dominant volatile fatty acids produced during the process, as favorable metabolic pathways for accelerating hydrogen production.Much attention has been recently paid to the health benefits of synbiotics, a combination of probiotics and prebiotics. In this study, synbiotics were prepared by combining lactic acid bacteria with potential as probiotics and purified glucooligosaccharides, and their immunostimulatory activity was evaluated using RAW 264.7 macrophage cells. A lactic acid bacteria strain with high antioxidant activity, acid and bile salt tolerance, adhesion to Caco-2 cells, and nitric oxide (NO) production was selected as a potential probiotic strain. The selected strain, isolated from forsythia, was identified as Lactococcus lactis SG-030. The purified glucooligosaccharides produced from Weissella cibaria YRK005 were used as prebiotics. RAW 264.7 cells were treated with synbiotics in two ways. One way was a simultaneous treatment with lactic acid bacteria and glucooligosaccharides. The other way was to pre-culture the lactic acid bacteria with glucooligosaccharides followed by treatment with synbiotic culture broth or synbiotic culture supernatant. In both cases, synbiotics synergistically increased NO production in RAW 264.7 cells. In addition, synbiotics treatment increased the expression of tissue necrosis factor-α, interleukin (IL)-1β, IL-6, and inducible nitric oxide synthase genes. Synbiotics also increased the expression of P38, extracellular signal-regulated kinases, c-Jun N-terminal kinases, phosphoinositide 3-kinase, and Akt proteins. The results confirmed that the synbiotics prepared in this study exhibited synergistic immunostimulatory activity.Dissemination of the mobile colistin resistance gene mcr in Enterobacterales among humans, animals, and the environment is a public health issue. We characterized mcr genes in the Klebsiellapneumoniae complex (KpnC) isolated from slaughtered pigs in Thailand. The 280 KpnCs consisted of K. pneumoniae (85%), Klebsiella quasipneumoniae (8.21%), and Klebsiella variicola (6.79%). mcr genes were detected in 6.79% (19/280) of KpnC isolates, consisting of mcr-8 (n = 9; 3.21%), mcr-7 (n = 7; 2.50%), mcr-7 + mcr-8 (n = 2; 0.71%), and mcr-1 + mcr-7 (n = 1; 0.36%). K. pneumoniae predominantly carried the mcr-7 and mcr-8 genes, while K. variicola and K. quasipneumoniae harbored mcr-7 and mcr-8, respectively. Six of the nineteen mcr-harboring KpnC isolates exhibited colistin resistance, and five had mcr-1 or mcr-8 transferable to an Escherichia coli recipient. Antimicrobial susceptibility analysis revealed that all mcr-carrying KpnC isolates were susceptible to carbapenems, cefotaxime, cefepime, amoxicillin/clavulanic acid, piperacillin/tazobactam, amikacin, and fosfomycin, and had high resistance to azithromycin. Multilocus sequence analysis demonstrated that the mcr-harboring KpnC isolates were genetically diverse. A 'One-Health' approach is useful to combat antimicrobial-resistant bacteria through coordinating the human, animal, and environmental sectors. Hence, continuous monitoring and surveillance of mcr-carrying KpnCs throughout the pork supply chain is crucial for ensuring public health.Esophageal adenocarcinoma (EAC) is mostly prevalent in industrialized countries and has been associated with obesity, commonly linked with a diet rich in fat and refined sugars containing high fructose concentrations. In meta-organisms, dietary components are digested and metabolized by the host and its gut microbiota. Fructose has been shown to induce proliferation and cell growth in pancreas and colon cancer cell lines and also alter the gut microbiota. In a previous study with the L2-IL-1B mouse model, we showed that a high-fat diet (HFD) accelerated EAC progression from its precursor lesion Barrett's esophagus (BE) through changes in the gut microbiota. Aiming to investigate whether a high-fructose diet (HFrD) also alters the gut microbiota and favors EAC carcinogenesis, we assessed the effects of HFrD on the phenotype and intestinal microbial communities of L2-IL1B mice. Results showed a moderate acceleration in histologic disease progression, a mild effect on the systemic inflammatory response, metabolic changes in the host, and a shift in the composition, metabolism, and functionality of intestinal microbial communities. We conclude that HFrD alters the overall balance of the gut microbiota and induces an acceleration in EAC progression in a less pronounced manner than HFD.After invading the host organism, a battle occurs between the parasitic protists and the host's immune system, the result of which determines not only whether and how well the host survives and recovers, but also the fate of the parasite itself. The exact weaponry of this battle depends, among others, on the parasite localisation. While some parasitic protists do not invade the host cell at all (extracellular parasites), others have developed successful intracellular lifestyles (intracellular parasites) or attack only the surface of the host cell (epicellular parasites). Epicellular and intracellular protist parasites have developed various mechanisms to hijack host cell functions to escape cellular defences and immune responses, and, finally, to gain access to host nutrients. They use various evasion tactics to secure the tight contact with the host cell and the direct nutrient supply. This review focuses on the adaptations and evasion strategies of parasitic protists on the example of two very successful parasites of medical significance, Cryptosporidium and Leishmania, while discussing different localisation (epicellular vs. intracellular) with respect to the host cell.Cointegrate/hybrid plasmids combine the genetic elements of two or more plasmids and generally carry abundant antimicrobial resistance determinants. Hence, the spread of cointegrate plasmids will accelerate the transmission of AMR genes. To evaluate the transmission risk caused by cointegrate plasmids, we investigated the structural diversity, fitness cost, and stability of a cointegrate plasmid in Klebsiella pneumoniae YZ6 and Escherichia coli EC600. The cointegrate plasmid pSL131_IncA/C_IncX3 was from a clinical Salmonella Lomita strain. After transferring the plasmid into E. BRD7389 solubility dmso coli EC600 by conjugation, we observed plasmids with different structures, including a full-length original plasmid and two truncated versions. By contrast, DNA fragment deletion and blaCTX-M-14 gene insertion in the plasmid were detected in a transconjugant derived from K. pneumoniae YZ6. These results suggest that the structure of the plasmid was unstable during conjugation. Furthermore, both the full-length plasmid in EC600 and the structurally reorganized plasmid in YZ6 imposed a fitness cost on the bacterial host and enhanced biofilm formation ability. Serial passaging in antibiotic-free medium resulted in a rapid decline of the plasmid in YZ6. However, the stability of the structurally reorganized plasmid in YZ6 was improved via serial passaging in antibiotic-containing medium. SNP calling revealed that mutations of the outer membrane porin may play an essential role in this process. These findings indicate that structural versatility could contribute to the dissemination of cointegrate plasmids. Although the plasmid incurred a fitness cost in other Enterobacteriaceae species, positive selection could alleviate the adverse effects.
Blood-feeding arthropods support a diverse array of symbiotic microbes, some of which facilitate host growth and development whereas others are detrimental to vector-borne pathogens. We found a common core constituency among the microbiota of 16 different arthropod blood-sucking disease vectors, including
,
,
,
,
,
,
and
. By comparing 21 genomes of common bacterial symbionts in blood-feeding vectors versus non-blooding insects, we found that certain enteric bacteria benefit their hosts by upregulating numerous genes coding for essential nutrients. Bacteria of blood-sucking vectors expressed significantly more genes (
< 0.001) coding for these essential nutrients than those of non-blooding insects. Moreover, compared to endosymbionts, the genomes of enteric bacteria also contained significantly more genes (
< 0.001) that code for the synthesis of essential amino acids and proteins that detoxify reactive oxygen species. In contrast, microbes in non-blood-feeding insects expressed fg for these essential nutrients than those of non-blooding insects. Moreover, compared to endosymbionts, the genomes of enteric bacteria also contained significantly more genes (p less then 0.001) that code for the synthesis of essential amino acids and proteins that detoxify reactive oxygen species. In contrast, microbes in non-blood-feeding insects expressed few gene families coding for these nutrient categories. We also discuss specific midgut bacteria essential for the normal development of pathogens (e.g., Leishmania) versus others that were detrimental (e.g., bacterial toxins in mosquitoes lethal to Plasmodium spp.).Polar seas are under threat of enhanced UV-radiation as well as increasing shipping activities. Considering the ecological importance of marine viruses, it is timely to study the impact of UV-AB on Arctic phytoplankton host-virus interactions and also test the efficacy of ballast water (BW) UV-C treatment on virus infectivity. This study examined the effects of (i) ecologically relevant doses of UV-AB radiation on Micromonas polaris RCC2258 and its virus MpoV-45T, and (ii) UV-C radiation (doses 25-800 mJ cm-2) on MpoV-45T and other temperate algal viruses. Total UV-AB exposure was 6, 12, 28 and 48 h (during the light periods, over 72 h total). Strongest reduction in algal growth and photosynthetic efficiency occurred for 28 and 48 h UV-AB treatments, and consequently the virus production rates and burst sizes were reduced by more than half (compared with PAR-only controls). For the shorter UV-AB exposed cultures, negative effects by UV (especially Fv/Fm) were overcome without impacting virus proliferation. To obtain the BW desired log-4 reduction in virus infectivity, a UV-C dose of at least 400 mJ cm-2 was needed for MpoV-45T and the temperate algal viruses. This is higher than the commonly used dose of 300 mJ cm-2 in BW treatment.Age-related changes in the gut microbiota and metabolites are associated with the increased risk of detrimental conditions also seen with age. This study evaluated whether a test food with potential anti-aging benefits results in favorable changes in plasma and fecal metabolites and the fecal microbiota in senior cats. Forty healthy domestic cats aged 8.3-13.5 years were fed a washout food for 30 days, then control or test food for 30 days. After another 30-day washout, cats were switched to the other study food for 30 days. Assessment of plasma and fecal metabolites showed lower levels of metabolites associated with detrimental processes (e.g., uremic toxins) and higher levels of metabolites associated with beneficial processes (e.g., tocopherols) after cats consumed the test food compared with the control food. A shift toward proteolysis with the control food is supported by higher levels of amino acid metabolites and lower levels of carbohydrate metabolites. Operational taxonomic units of greater abundance with the test food positively correlated with carbohydrate and nicotinic acid metabolites, and negatively correlated with uremic toxins, amino acid metabolism, secondary bile salts, and branched-chain fatty acids.