Macdonaldleslie7330

Z Iurium Wiki

Device stability under illumination is the main obstacle of nonfullerene (NF) organic solar cells for moving toward practical application. ZnO, a generally used electron-transporting layer in inverted cells, is prone to induce the decomposition of NF acceptors under illumination with air mass 1.5 (AM1.5) spectrum, resulting in poor device stability. Herein, we report an aqueous polyethylenimine (a-PEI) modification on the ZnO surface could significantly enhance the stability of the NF organic solar cells. After 1000 h of AM1.5 illumination, the efficiency of the cell without a-PEI modification degrades to 43% of its initial value, while the cell with a-PEI modification could maintain 75% of its initial efficiency. The a-PEI modification reduces the number of surface defects with reduced adsorbed oxygen ZnO surface, faster work function recovery kinetics after UV irradiation, and suppressed electron spin resonance response. The reduction of surface defects is beneficial to the stability of NF acceptors on ZnO and also device performance.Triplet dynamic nuclear polarization (triplet-DNP) achieves nuclear spin polarization at moderate temperatures by using spin polarization of photoexcited triplet electrons. The applications of triplet-DNP for biomolecules have been hampered because acenes, the only polarizing agents used so far, tend to aggregate and lose their polarization in biomolecular matrices. Here, we report for the first time use of porphyrins as polarizing agents of triplet-DNP and propose a new concept of aggregation-tolerant polarizing agents. Sodium salts of tetrakis(4-carboxyphenyl)porphyrin (TCPPNa) can be dispersed in amorphous as well as crystalline biomolecular matrices, and importantly, it can generate polarized triplet electrons even in a slightly aggregated state. Triplet-DNP of crystalline erythritol containing slightly aggregated TCPPNa can achieve more than 120-fold signal enhancement. Because TCPPNa is also the first biocompatible triplet-DNP polarizing agent, this work provides a crucial step forward for the biological and medical applications of triplet-DNP.The synthesis and thermal redox chemistry of the first antimony (Sb)- and bismuth (Bi)-phosphaketene adducts are described. When diphenylpnictogen chloride [Ph2PnCl (Pn = Sb or Bi)] is reacted with sodium 2-phosphaethynolate [Na[OCP]·(dioxane) x ], tetraphenyldipnictogen (Ph2Pn-PnPh2) compounds are produced, and an insoluble precipitate forms from solution. In contrast, when the N-heterocyclic carbene adduct (NHC)-PnPh2Cl is combined with [Na[OCP]·(dioxane) x ], Sb- and Bi-phosphaketene complexes are isolated. Thus, NHC serves as an essential mediator for the reaction. Immediately after the formation of an intermediary pnictogen-phosphaketene NHC adduct [NHC-PnPh2(PCO)], the NHC ligand transfers from the Pn center to the phosphaketene carbon atom, forming NHC-C(O)P-PnPh2 [Pn = Sb (3) or Bi (4)]. In the solid state, 3 and 4 are dimeric with short intermolecular Pn-Pn interactions. When compounds 3 and 4 are heated in THF at 90 and 70 °C, respectively, the pnictogen center PnIII is thermally reduced to PnII to form tetraphenyldipnictines (Ph2Pn-PnPh2) and an unusual bis-carbene-supported OCP salt, [(NHC)2OCP][OCP] (5). The formation of compound 5 and Ph2Pn-PnPh2 from 3 or 4 is unique in comparison to the known thermal reactivity for group 14 carbene-phosphaketene complexes, further highlighting the diverse reactivity of [OCP]- with main-group elements. All new compounds have been fully characterized by single-crystal X-ray diffraction, multinuclear NMR spectroscopy (1H, 13C, and 31P), infrared spectroscopy, and elemental analysis (1, 2, and 5). The electronic structure of 5 and the mechanism of formation were investigated using density functional theory (DFT).Binding of a family of brominated benzotriazoles to the catalytic subunit of human protein kinase CK2 (hCK2α) was used as a model system to assess the contribution of halogen bonding to protein-ligand interaction. CK2 is a constitutively active pleiotropic serine/threonine protein kinase that belongs to the CMGC group of eukaryotic protein kinases (EPKs). Due to the addiction of some cancer cells, CK2 is an attractive and well-characterized drug target. Halogenated benzotriazoles act as ATP-competitive inhibitors with unexpectedly good selectivity for CK2 over other EPKs. We have characterized the interaction of bromobenzotriazoles with hCK2α by X-ray crystallography, low-volume differential scanning fluorimetry, and isothermal titration calorimetry. Properties of free ligands in solution were additionally characterized by volumetric and RT-HPLC measurements. Thermodynamic data indicate that the affinity increases with bromo substitution, with greater contributions from 5- and 6-substituents than 4- and 7-substituents. Except for 4,7-disubstituted compounds, the bromobenzotriazoles adopt a canonical pose with the triazole close to lysine 68, which precludes halogen bonding. More highly substituted benzotriazoles adopt many additional noncanonical poses, presumably driven by a large hydrophobic contribution to binding. Some noncanonical ligand orientations allow the formation of halogen bonds with the hinge region. Consistent with a predominantly hydrophobic interaction, the isobaric heat capacity decreases upon ligand binding, the more so the higher the substitution.Two-dimensional (2D) ReSe2 has attracted considerable interest due to its unique anisotropic mechanical, optical, and exitonic characteristics. Recent transient absorption experiments demonstrated a prolonged lifetime of photoexcited charge carriers by stacking ReSe2 with MoS2, but the underlying mechanism remains elusive. Here, by combining time-domain density functional theory with nonadiabatic molecular dynamics, we investigate the electronic properties and charge carrier dynamics of 2D ReSe2/MoS2 van der Waals (vdW) heterostructure. GSK1838705A in vitro ReSe2/MoS2 has a type II band alignment that exhibits spatially distinguished conduction and valence band edges, and a built-in electric field is formed due to interface charge transfer. Remarkably, in spite of the decreased band gap and increased decoherence time, we demonstrate that the photocarrier lifetime of ReSe2/MoS2 is ∼5 times longer than that of ReSe2, which originates from the greatly reduced nonadiabatic coupling that suppresses electron-hole recombination, perfectly explaining the experimental results. These findings not only provide physical insights into experiments but also shed light on future design and fabrication of functional optoelectronic devices based on 2D vdW heterostructures.The shear viscosity, density, and interfacial tensions (IFT) of two systems, namely, brine and brine/n-decane, blended with carbon dioxide (CO2) were investigated via molecular dynamics simulations over broad ranges of temperature, pressure, CO2 mole fraction, and brine concentration. The operating conditions for the molecular simulations to be studied are similar to the CO2 geological storage processes. The effects of temperature, pressure, and concentrations on the viscosity and IFT have been investigated and analyzed. All four influencing parameters affect the shear viscosity and IFT. The pressures and temperatures up to 1000 bar and 573 K, respectively, were used for predicting the viscosity and IFT by considering intermolecular interactions, while salinities up to 32 000 ppm and CO2 mole fractions between 0 and 0.5 were used in the simulations. Comparisons were made between simulated values and the predicted results of an empirical correlation, both against experimental data. Both monovalent and divalent ions and their mixtures were used in the simulations, and the results showed that monovalent ions impose stronger interactions in the solution than divalents. The results have revealed that the supercritical CO2's capability to reduce the IFT of the brine/n-decane interface is remarkable, which makes it a promising agent for underground geological injection for enhanced oil recovery. Also, viscosity and density ratio analysis have confirmed the viability of CO2 storage in deep saline aquifers, where harsh geothermal conditions of high salinities limit the extent of the experiments. The molecular simulation results are in good qualitative agreement with the experimental data available in the literature for the viscosity, density, and IFT.The first total synthesis of the cytotoxic alkaloid ritterazine B is reported. The synthesis features a unified approach to both steroid subunits, employing a titanium-mediated propargylation reaction to achieve divergence from a common precursor. Other key steps include gold-catalyzed cycloisomerizations that install both spiroketals and late stage C-H oxidation to incorporate the C7' alcohol.The absorption and emission of light is a ubiquitous process in chemical and biological processes, making a theoretical description inevitable for understanding and predicting such properties. Although ab initio and DFT methods are capable of describing excited states with good accuracy in many cases, the investigation of dynamical processes and the need to sample the phase space in complex systems often requires methods with reduced computational costs but still sufficient accuracy. In the present work, we report the derivation and implementation of analytical nuclear gradients for time-dependent long-range corrected density functional tight binding (TD-LC-DFTB) in the DFTB+ program. The accuracy of the TD-LC-DFTB potential-energy surfaces is benchmarked for excited-state geometries and adiabatic as well as vertical transition energies. The benchmark set consists of more than 100 organic molecules taken as subsets from available benchmark sets. The reported method yields a mean deviation of 0.31 eV for adiabatic excitation energies with respect to CC2. In order to study more subtle effects, seminumerical second derivatives based on the analytical gradients are employed to simulate vibrationally resolved UV/vis spectra. This extensive test exhibits few problematic cases, which can be traced back to the parametrization of the repulsive potential.In double-helical DNAs, the most stable Watson-Crick (WC) base pair (bp) can be in thermal equilibrium with much less abundant Hoogsteen (HG) bp by the spontaneous rotation of the glycosidic angle in purine bases. Previous experimental studies showed that in the case of a G·C bp, the population of the transient HG is enhanced as a protonated form (HG+) through the protonation of the cytosine base under weakly acidic conditions. Hence, pH is a key factor that can modulate this transition event from the WC to HG+ bp. In this study, to computationally probe the overall free-energy landscapes of this pH-modulated G·C HG breathing, a comprehensive classical molecular dynamics (MD) simulation protocol is proposed using an enhanced sampling MD in conjunction with the standard thermodynamic integration method. From this MD protocol proposed, the free-energy surfaces of the G·C bp transition from the WC to HG bp were constructed successfully at any pH range, producing pH-dependent free-energy quantities in close agreement with previously reported experimental results. The simulation protocol is expected to provide valuable atomistic insight into the DNA bp transition events coupled with protonation or tautomeric shift in a target bp.

Autoři článku: Macdonaldleslie7330 (Pena Fuentes)