Lyngsaleh0342

Z Iurium Wiki

After strain T3F4 was inoculated, no significant differences in microbial diversity were observed in the soils and roots, whereas the abundance of Rhizobium spp. was significantly increased. To our knowledge, this is the first time that Se-oxidizing Agrobacterium sp. T3F4 has been found to steadily colonize soil and plant tissues, and that its addition to soil increases the absorption of Se in plants. This study provides a potential strategy for Se biofortification.Marine anthropogenic litter is increasing in prevalence in both the marine environment and its inhabitants. This study assesses the levels of anthropogenic microplastics in benthic infauna from 20 subtidal stations in Galway Bay, Ireland. Microplastics were removed from the organisms using an alkaline digestion (KOH) and their synthetic origin was confirmed by μFTIR spectroscopic analysis. The average number of microplastics recorded for all organisms was 0.79 ± 1.14 particles individual-1, similar to previously published results on subtidal fauna of the North Sea. read more Fibres were the dominant particle type (98%) and the majority were identified as natural (cellulose, cotton). Synthetic polymers identified included PVA (polyvinyl acetate), EPDM (synthetic rubber), PE (polyethylene) and PVC (polyvinyl chloride). Fibres less than 1 mm made up 55% of the recovered lengths. Colours recorded in the organisms were mainly blue and were reflective of the surrounding habitats. Of the five phyla collected, the highest incidence and uptake was associated with the Annelida. A significant difference in ingested MPs was only evident when depth (greater and less than 30 m) was considered as a factor. In addition, no significant differences were found between either the numbers of ingested MPs and phyla or feeding strategies. The results indicate that future studies should follow an ecosystem-based approach to monitor MPs levels in an area where specific bioindicator(s) have not been identified or are unsuitable.This study explored the sources, transformations of suspended particulate organic matter (POM), and the influence of landscape patterns on POM within the Beiyun River Watershed by applying the stable carbon and nitrogen isotope technique combined with multiple statistical analyses. The POM variables showed great spatial fluctuations under different urban development gradients. Analysis of multiple isotopes revealed that assimilation of phytoplankton might exist in the rainy season, while nitrification occurs in the dry season. SIAR modeling results indicated that the sewage debris and phytoplankton were the main sources of POM in both seasons, accounting for 52.58% and 38.39% in the rainy season, 33.17% and 31.95% in the dry season, respectively. Spatiotemporal variations of POM sources existed in the study watershed, probably due to urbanization and human disturbance. The multiple linear stepwise regression and redundant analysis results indicated that landscape metrics reflecting contagion and fragmentation at the class level correlated well with the POM variables over seasons. Interspersion and juxtaposition indices of grassland and water were negatively related to POM variables in the rainy season, whereas the landscape division index of buildup land showed negative correlations with POM parameters in the dry season. Increasing the adjacency of grassland and water to other land uses, while reducing the aggregation of buildup lands would be an efficient way for urban river water quality improvement.Badain Jaran Desert (BJD), characterized by extremely arid climate and tallest sand dunes in the world, is the second largest desert in China. Surprisingly, there are a large number of permanent lakes in this desert. At present, little is known about the composition and distribution of microbial communities in these desert lakes, which are an important bioresource and play a fundamental role in the elemental cycles of the lakes. In this study, the physicochemical characteristics and microbial communities of water samples from 15 lakes in BJD were comparatively investigated. The results showed that the lakes were rich in Na+, Cl-, CO32- and HCO3- while Ca2+ and Mg2+ were scarce, with pH 8.52-10.27 and salinity 1.05-478.70 g/L. Bacteria dominated exclusively in low saline lakes (salinity 250 g/L), which abundance increased along salinity gradient linearly. Genera Flavobacterium, Synechocystis and Roseobacter from phyla Bacteroidetes, Cyanobacteria, Alphaproteobacteria were the major members in low saline lakes whereas Halomonas, Aliidiomarina and Halopelagius from Gammaproteobacteria and Euryarchaeota were abundant in moderately saline lakes (salinity 50-250 g/L). The hypersaline lakes were predominated by extreme halophiles such as Halorubrum, Halohasta and Natronomonas from Euryarchaeota. The correlation among the microbes in the lakes was mainly positive, suggesting they can survive in the harsh environments through synergistic interactions. Statistical analyses indicated that physicochemical characteristics rather than spatial factors shaped the microbial communities in the desert lakes. The pH was the most important environmental factor controlling alpha diversity, while salinity was the major driver determining microbial community structure in BJD lakes. In contrast, geographic factors had no significant impact on the microbial community compositions.The biokinetics of radionuclide transfers to biota in the marine environment can be modelled using two parameters, specific to both each element/radionuclide and biota. The Concentration Factor (CF) reflects the ratio between the activity concentrations in the biota and the surrounding seawater in steady state. The biological half-life (tb1/2) characterizes depuration kinetics for the radionuclide from the biota. While recommended CF values can be found in the literature, no guidelines actually exist for tb1/2 values. We used available time-series activity concentration measurements in biota in the English Channel, where controlled amounts of liquid radioactive waste are discharged by the ORANO La Hague reprocessing plant. We calculated the corresponding time-series activity concentrations in seawater for each biota dataset using an extensively-validated hydrodynamic model. We derived the values of CF and tb1/2 from seawater and biota data, to model radionuclide transfers between the two compartments. To assess the performance of the model, we analyzed the residual between observed and calculated levels in the biota.

Autoři článku: Lyngsaleh0342 (Ernst McQueen)