Lykkegaardproctor2608
Seagrasses are marine angiosperms that can form highly productive, and valuable underwater meadows, which are currently in regression. A reliable assessment of their status and future evolution requires studies encompassing long-term temporal scales. With the aim of understanding seagrass ecosystem dynamics over the last centuries and millennia, twelve sediment cores were studied from seagrass meadows located along the Andalusian coast and at the Cabrera Island (western Mediterranean). This study is pioneer in using Fourier Transform Infrared (FTIR) spectroscopy as a tool to study environmental change in seagrass sediments. FTIR is a form of vibrational spectroscopy that provides information about the sediment chemical composition. Principal Component Analysis (PCA) was used to summarise spatio-temporal data of the FTIR vibratory peaks in combination with climate and geochemical proxy data. buy compound 3k Several PCA signals were identified (1) one likely related to the relative changes of the main primary producers and thelans and identify meadows where local management could be more efficient.Cyanobacterial toxic blooms are a worldwide problem. The Río de la Plata (RdlP) basin makes up about one fourth of South America areal surface, second only to the Amazonian. Intensive agro-industrial land use and the construction of dams have led to generalized eutrophication of main tributaries and increased the intensity and duration of cyanobacteria blooms. Here we analyse the evolution of an exceptional bloom at the low RdlP basin and Atlantic coast during the summer of 2019. A large array of biological, genetic, meteorological, oceanographic and satellite data is combined to discuss the driving mechanisms. The bloom covered the whole stripe of the RdlP estuary and the Uruguayan Atlantic coasts (around 500 km) for approximately 4 months. It was caused by the Microcystis aeruginosa complex (MAC), which produces hepatotoxins (microcystin). Extreme precipitation in the upstream regions of Uruguay and Negro rivers' basins caused high water flows and discharges. The evolution of meteorological and oceanographic conditions as well as the similarity of organisms' traits in the affected area suggest that the bloom originated in eutrophic reservoirs at the lower RdlP basin, Salto Grande in the Uruguay river, and Negro river reservoirs. High temperatures and weak Eastern winds prompted the rapid dispersion of the bloom over the freshwater plume along the RdlP northern and Atlantic coasts. The long-distance rapid drift allowed active MAC organisms to inoculate freshwater bodies from the Atlantic basin, impacting environments relevant for biodiversity conservation. Climate projections for the RdlP basin suggest an increase in precipitation and river water flux, which, in conjunction with agriculture intensification and dams' construction, might turn this extraordinary event into an ordinary situation.Anaerobic digestion (AD) is widely used on waste treatment for its great capability of organic degradation and energy recovery. Accumulation of volatile fatty acids (VFAs) caused by impact loadings often leads to the acidification and failure of AD systems. Bioaugmentation is a promising way to accelerate VFA degradation but the succession of microbial communities usually caused unpredictable consequences. In this study, we used the sludge previously acclimated with VFAs for the bioaugmentation of an acidified anaerobic digestion system and increased the methane yield by 8.03-9.59 times. To see how the succession of microbial communities affected bioaugmentation, dual-chamber devices separated by membrane filters were used to control the interactions between the acidified and acclimated sludges. The experimental group with separated sludges showed significant advantages of VFA consumption (5.5 times less final VFA residue than the control), while the group with mixed sludge produced more methane (4.0 times higher final methane yield than the control). Microbial community analysis further highlighted the great influences of microbial interaction on the differentiation of metabolic pathways. Acetoclastic methanogens from the acclimated sludge acted as the main contributors to pH neutralization and methane production during the early phase of bioaugmentation, and maintained active in the mixed sludge but degenerated in the separated sludges where interactions between sludge microbiotas were limited. Instead, syntrophic butyrate and acetate oxidation coupled with nitrate and sulfate reduction was enriched in the separated sludges, which lowered the methane conversion rate and would cause the failure of bioaugmentation. Our study revealed the importance of microbial interactions and the functionality of enriched microbes, as well as the potential strategies to optimize the durability and efficiency of bioaugmentation.Large mammals that occur in low densities, particularly in the high-altitude areas, are globally threatened due to fragile climatic and ecological envelopes. Among bear species, the Himalayan brown bear (Ursus arctos isabellinus) has a distribution that is restricted to Himalayan highlands with relatively small and fragmented populations. To date, very little scientific information on the Himalayan brown bear, which is vital for the conservation of the species and the management of its habitats, especially in protected areas of the landscape, is available. The present study aims to understand the effectiveness of existing Himalayan Protected Areas in terms of representativeness for the conservation of Himalayan brown bear (HBB), an umbrella species in high-altitude habitats of the Himalayan region. We used the ensemble approach of the species distribution model and then assessed biological connectivity to predict the current and future distribution and movement of HBB in climate change scenarios for the year spatial planning for protecting suitable habitats distributed outside the PA for climate change adaptation.Environmental pollution caused by antibiotics-containing wastewater has attracted increasing attention. Considering the superior photocatalytic performance and the issue of photo-corrosion over silver-based photocatalysts, it is desirable to construct silver-based photocatalysts with high photostability. Herein, a serious of Ag3PO4/C3N5 nanocomposites with Z-scheme band alignment were rationally designed and fabricated for tetracycline hydrochloride (TCH) removal. A variety of characterizations were employed to systematically study the phase structure, morphology and microstructure, optical properties, surface chemical states, and photocatalytic performance of the as-fabricated photocatalysts. The as-prepared Ag3PO4/C3N5 nanocomposites exhibited superior photocatalytic activity and photochemical stability than a single component toward TCH removal, meanwhile, the photocatalytic performance was not increased with the increasing amount of Ag3PO4. The possible photocatalytic mechanism (Z-scheme mechanism) was investigated and verified. The Z-scheme heterojunctions formed between Ag3PO4 and C3N5 is the main reason for the enhanced photocatalytic activities.Plant root systems can greatly reduce soil loss, and their effects on soil erosion differ across species due to their varied root traits. link2 The purpose of this study was to determine the effects of root morphology traits of herbaceous plants on the soil detachment process. Ten herbaceous plants (dominant species) in the Loess Plateau were selected, and 300 undisturbed soil samples (including living roots from the selected herbages) were scoured with flowing water to measure their soil detachment capacities under six levels of shear stress (4.98 to 16.37 Pa). Then, the root traits of each soil sample were measured, and the rill erodibility and critical shear stress were estimated based on the Water Erosion Prediction Project (WEPP) model. The results showed that root morphology traits varied greatly among the ten selected herbages. Accordingly, resulting variations in soil detachment capacity (0.030 to 3.297 kg m-2 s-1), rill erodibility (0.004 to 0.447 s m-1), and critical shear stress (4.73 to 1.13 Pa) were also observed. Plants with fibrous roots were more effective than those with tap roots in reducing soil detachment. Their mean soil detachment capacity and rill erodibility were 93.2% and 93.4% lower, respectively, and their mean critical shear stress was 1.15 times greater than that of the herbaceous plants with tap root systems. Of all the root traits, root surface area density (RSAD) was the primary root trait affecting the soil detachment, and it estimated the soil detachment capacity well (R2 = 0.91, normalized squared error (NSE) = 0.82). Additionally, an equation with few factors (soil aggregate and RSAD) was suggested to simulate the soil detachment capacity when the plant root parameters and soil properties were limited.Various hazardous trace elements emitted from anthropogenic activities are attracting increasing public awareness. This study comprehensively explored the distribution and emissions of trace elements in coal-fired power plants (CFPPs) after ultra-low emission retrofitting by conducting field experiments, literature surveys, and model calculations. High levels of volatile Hg and semi-volatile As/Pb were mainly observed in fly ash and gypsum (96.6%-98.5%), while the proportion of non-volatile Cr in bottom ash was 9.23%. The Hg and As/Pb removal efficiencies were remarkably improved by ultra-low emission retrofitting, increasing by 5.67% and 2.08%/2.63%, respectively. However, ULE retrofitting only slightly affected (0.17%) non-volatile elements. These improvements were mainly attributed to the low-low-temperature electrostatic precipitator. Owing to the enhanced particle-capturing efficiencies, the concentrations of trace elements in the emitted gas of the tested CFPPs were low, ranging from 0.21-1.50 μg/m3, but accounted for a high proportion of the gas phase (61.8%-100%). Based on the national database of coal quality and their behaviour in CFPPs, we found that most of the concentrations of trace elements emitted from Chinese CFPPs were significantly lower than the internationally existing emission limits. However, owing to the skewed distribution characteristics of the emitted concentrations, we suggest issuing or revising the corresponding emission limits and improving the control of intense trace element pollution in China.This study investigates the reliability of a pilot hybrid constructed wetland (H-CW), located in Eastern Sicily (Italy). To address the uncertainty associated with implementing representative monitoring during highly variable storm events, unique to Mediterranean conditions, a recipe for semi-synthetic stormwater was used to evaluate the removal efficiency of the system. This was characterised by metals (Cd, Cr, Fe, Pb, Cu, Zn) and relative concentrations typically found in urban stormwater runoff (SR). Approximately one month of intensive monitoring activities were carried out and quality analyses were conducted on three matrices comprising the pilot H-CW water, biomass (Canna indica, Typha latifolia), and volcanic gravel substrate. Metal retention in early clogging matter (SS) was also examined. link3 The results showed a significantly high H-CW efficiency for the removal of all metals (70-98%) already at the horizontal flow unit outflow, confirming its strategic role. A metal mass balance analysis was also conducted to describe the retention capacity and influence of each system component on the overall efficiency (ranging from 87.