Lyhnefitzpatrick1879

Z Iurium Wiki

The influence of the thermo-oxidative aging semi-crystalline polyethylene terephthalate process on the thermal and mechanical properties was analysed in the article. For this purpose, PET was aged at 140 °C for 21, 35 and 56 days. The research showed that as a result of aging, the amount of the crystalline phase increases by about 8%, which translates into the properties of the aged material. The glass transition and melt temperature of lamellar crystals formed during first and second crystallisation increase with aging. The mechanical properties of the material were analysed in the temperature range of 25 to 75 °C. The tests were showing an increase in Young's modulus and a decrease in elongation at the break as a result of aging. This phenomenon was particularly visible during tests at 75 °C and during the morphological observation of the fracture surface, where the fracture character of the material changes from ductile to brittle. In the case of the material aged for the longest time, the temperature has a negligible influence on the elongation at break.With regard to the problem of gas flow through isotropic porous deposits, the issues were considered in the category of description of gas movement mechanisms for structural models of the skeleton. As part of experimental tests of gas permeability through porous material in the form of polyamide, the numerical simulation method was used, using the k-ε turbulence model. The analysis of hydrodynamic phenomena occurring in the porous material made it possible to confront experimental research with numerical calculations. The analysis shows that, for a porous polyamide bed, there is a certain limit range of gas velocity (10-4-1) ms-1 at which flow resistance is the lowest. On the other hand, the highest value of the flow resistance is gradually achieved in the range of gas velocity (1-10) ms-1. This is due to the different structure of the isotropic polyamide material. The validation of the numerical model with experimental data indicates the validity of the adopted research methodology. It was found that the permeability characteristics of the tested porous material practically did not depend on the direction of gas flow. For porous polyamide, the permeability characteristic is non-linear, which, from the point of view of the measurements carried out, indicates the advantage of turbulent gas flow over its laminar movement. The novelty of the article is a proprietary method of measuring gas permeability for a cube-shaped sample made of a material constituting a sinter of spherical particles of equal dimensions. The method enables the determination of gas flow (in each flow direction) in microchannels forming an orthogonal network, characteristic of isotropic materials.The spectroscopic properties of SrLaGaO4 (SLO) crystal doped with Ho3+ ions were studied in this work. Absorption, emission spectra and decay dynamics of excited states have been measured and discussed using the Judd-Ofelt model. Photoluminescence emissions were attributed to transitions from the excited 3D3, 5S2, 5F5, 5I6 and 5I7 multiplet manifolds. The experimental lifetimes for five excited states have been compared to the theoretical values, calculated using Judd-Ofelt theory, allowing for the determination of the multiphonon relaxation rates (WnR) of the respective states. The experimental data were approximately on a line expressed by WnR = W0 exp(-αΔE) with W0 = 0.5 × 107 s-1 and α = 2.6 × 10-3 cm. To discuss the excited state absorption (ESA) pathways, that originated from several excited levels, we used the Judd-Ofelt formalism allowing determination of the integrated cross section for ESA transitions.Damage in concrete structures initiates as the growth of diffuse microcracks that is followed by damage localisation and eventually leads to structural failure. Weak changes such as diffuse microcracking processes are failure precursors. Identification and characterisation of these failure precursors at an early stage of concrete degradation and application of suitable precautionary measures will considerably reduce the costs of repair and maintenance. To this end, a reduced order multiscale model for simulating microcracking-induced damage in concrete at the mesoscale level is proposed. The model simulates the propagation of microcracks in concrete using a two-scale computational methodology. First, a realistic concrete specimen that explicitly resolves the coarse aggregates in a mortar matrix was generated at the mesoscale. Microcrack growth in the mortar matrix is modelled using a synthesis of continuum micromechanics and fracture mechanics. Model order reduction of the two-scale model is achieved using a clustering technique. Model predictions are calibrated and validated using uniaxial compression tests performed in the laboratory.Marble is currently a commonly used material in the building industry, and environmental degradation is an inevitable consequence of its use. Marble waste occurs during the exploitation of deposits using shooting technologies. The obtained elements most mainly often have an irregular geometry and small dimensions, which excludes their use in the stone industry. There is no systematic way of disposing of these massive mounds of waste, which results in the occurrence of landfills and environmental pollution. To mitigate this problem, an effort was made to incorporate waste marble powder into clay bricks. Different percentage proportions of marble powder were considered as a partial substitute for clay, i.e., 5-30%. A total of 105 samples were prepared in order to assess the performance of the prepared marble clay bricks, i.e., their water absorption, bulk density, apparent porosity, salt resistance, and compressive strength. selleck The obtained bricks were 1.3-19.9% lighter than conventional bricks. The bricks with the addition of 5-20% of marble powder had an adequate compressive strength with regards to the values required by international standards. Their compressive strength and bulk density decreased, while their water absorption capacity and porosity improved with an increased content of marble powder. The obtained empirical equations showed good agreement with the experimental results. The use of waste marble powder in the construction industry not only lowers project costs, but also reduces the likelihood of soil erosion and water contamination. This can be seen to be a crucial factor for economic growth in agricultural production.

Autoři článku: Lyhnefitzpatrick1879 (Carpenter Bowling)