Lundsgaardrandrup0264
Nacre has achieved an excellent combination of strength and toughness through its unique brick-and-mortar structure of layered aragonite platelets bonded with biopolymers. read more Mimicking nacre has been considered as a practical way for the development of high-performance structural composites. Over the past years, many techniques have been developed to fabricate multifunctional nacre-mimetic materials, including freeze casting, layer-by-layer assembly, vacuum filtration, 3D printing and so on. Among them, freeze casting, especially bidirectional freeze casting, as an environmentally friendly and scalable method, has attracted extensive attention recently. In this review, we begin with the introduction and discussion of various fabrication techniques comparing their advantages and disadvantages, focusing on the most recent advances of the bidirectional freeze casting technique. Then, we summarize representative examples of applying the bidirectional freeze casting technique to assemble various building blocks into multifunctional nacre-mimetic materials and their wide applications. At the end, we discuss the future direction of using bidirectional freeze casting to make nacre-mimetic materials.The grain structure and surface morphology of bio-implants act as a pivotal part in altering cell behavior. Titanium alloy bone screws, as common implants, are prone to screws loosening and complications threat in the physiological environment due to their inferior anti-wear and surface inertia. Manufacturing bone screws with high wear resistance and ideal biocompatibility has always been a challenge. In this study, a series of overlapping morphologies inspired by the hierarchical structure of fish scales and micro bulges of shrimp were structured on Ti-6Al-4V implant by laser texturing. The results indicate that the textured patterns could improve cell attachment, proliferation, and osteogenic differentiation. The short-term response of human bone marrow-derived mesenchymal stem cells (hBMSCs) on the textured surface are more sensitive to the microstructure than the surface roughness, wettability, grain size and surface chemical elements of the textured surfaces. More importantly, the friction-increasing and friction-reducing type overlapping structures exhibit excellent friction stability at different stages of modified simulated body fluid (m-SBF) soaking. The overlapping structure (Micro-smooth stacked ring MSSR) is more beneficial to promote the formation of apatite. Deposited spherical-like apatite particles can act as a "lubricant" on the MSSR surface during the friction process to alleviate the adhesion wear of the surface. Meanwhile, apatite particles participate in the formation of friction film, which plays an effective role in reducing friction and antiwear in corrosion solution (m-SBF) for a long time. These features show that the combination of soaking treatment in m-SBF solution with laser-textured MSSR structure is expected to be an efficient and environmentally friendly strategy to prolong the service life of bone screws and reducing the complications of mildly osteoporotic implants.Ideal materials for bone regeneration should have not only a good bioactivity, but also a good mechanical strength to provide an initial support for new bone formation. How to get a balance between high mechanical property and good bioactivity is a challenging issue for bone regeneration materials. In the present work, a biocompatible additive Fe2O3 was selected to optimize the comprehensive properties of a novel calcium phosphate silicate (CPS) ceramic using a mechanical mixing method. The effects of Fe2O3 content on microstructure, bending strength, apatite formation ability and cytocompatibility of Fe-CPS bioceramics were investigated and the related mechanism was also discussed. The obtained Fe-CPS bioceramics showed enhanced mechanical and favorable bioactivity performances. Especially, the Fe-CPS bioceramic with 1.5 wt% Fe2O3 sintered at 1250 °C presented the highest bending strength of 91.9 MPa. While, Fe-CPS bioceramics still exhibited a good ability on apatite formation in simulated body fluid (SBF), and cytocompatibility test revealed that Fe-CPS bioceramics were favorable for cell adhesion and proliferation. All the results indicated that Fe-CPS bioceramics are promising candidate materials for bone regeneration at load bearing applications.Annealing after welding is a common operational process to improve the mechanical properties of metallic joints through releasing residual stresses in the weld zone. In this study, the effect of post weld annealing on the microstructure and mechanical properties of dissimilar laser-welds for orthodontic archwires of NiTi alloy to austenitic stainless steel has been investigated. In order to do this, the laser-welded wires were annealed at temperatures of 100, 200, and 300 °C for 1 h and then they were quenched in water. Results show that annealing at 100 °C does not affect the microstructure and mechanical properties of joints but post weld heat treatment at 200 °C ends in an increase in the tensile strength to an order of 1.91 times of the strength of as welded (non-heat-treated) joints. Also, precipitation and increase of intermetallic compounds, such as Cr2Ti, and Fe2Ti, at the weld zone during heat treatment at 300 °C, results in a reduction in the mechanical properties of joints. Therefore, post-weld annealing is an effective process on improving mechanical properties of dissimilar joints of these two alloys. However, a suitable heat-treatment temperature is needed in order to achieve desired results.The aim of this study was to fabricate and characterize dental composites containing hydroxyapatite nanoparticles (HApNPs). Four dental composites were produced from the same organic matrix (70 wt% Bis-GMA and 30 wt% TEGDMA), with partial replacement of BaBSi particles (65 wt%) by HApNPs in the following concentrations (wt%) E0 (0) - control, E10 (10), E20 (20) and E30 (30). Ca2+ and PO43- release was evaluated in solutions with different pHs (4, 5.5, and 7) using atomic emission spectroscopy with microwave-induced nitrogen plasma while the enamel remineralization potential was evaluated in caries-like enamel lesions induced by S. mutans biofilm using micro-CT. The following properties were characterized degree of conversion (DC%), microhardness (KHN), flexural strength (FS), elastic modulus (EM) and translucency (TP). The higher the HApNPs content, the higher the Ca2+ and PO43- release. The ions release was influenced by pH (4 > 5.5 > 7) (p E10) (p less then 0.05). Contrarily, E0 was not able of recovering the enamel mineral loss.