Lundqvistbeach8907
The results showed that good linearities (r ≥ 0.9994) were obtained in the concentration range of 7.8-1000.0 μg/L. The limits of detection and quantification were in the range of 0.25-2.59 μg/L and 0.82-8.63 μg/L, respectively. The spiked recoveries were 81.26-118.42% with the relative standard deviation (RSD, n = 3) lower than 8.17%. The present method was successfully applied to the simultaneous determination of triazine and phenylurea herbicides in vegetable protein drinks.Phorbas is a widely studied genus of marine sponge and produce structurally rich cytotoxic metabolites. BI 1015550 cost Still, only few studies have assessed metabolites present in Brazilian species. To circumvent redundancy, in this work, we applied and herein report the use of a scouting liquid chromatographic system associate to the design of experiment produced by the DryLab® software to obtain a fast and efficient chromatographic separation of the active hexane fraction, further enabling untargeted high-resolution mass spectrometry (HRMS) data. To this end, a crude hydroalcoholic extract of the sponge Phorbas amaranthus collected in Brazilian coast was prepared and partitioned. The cytotoxicity of the crude extract and the fractions was evaluated using tumor cell culture models. Fragmentation pathways assembled from HRMS data allowed the annotation of 18 known Phorbas metabolites, while 17 metabolites were inferred based on Global Natural Product Social Molecular Networking (GNPS), matching with a further 29 metabolites annotated through molecular subnetwork. The workflow employed demonstrates that chromatographic method development can be accelerated by the use of automated scouting systems and DryLab®, which is useful for profiling natural product libraries, as well as data curation by molecular clusters and should be incorporated to the tools of natural product chemists.This work highlights the effect of the stationary phase coating process on the separation efficiency of gas chromatography microcolumns. The stationary phase coating quality was characterized by three different bis(trifluoromethylsulfonyl)imide (NTf2) anion based ionic liquids. The ionic liquids containing NTf2 anion are used for gas chromatography due to their high temperature stability. In this work, the chemical and physical approaches of column deactivation as well as the temperature treatment were evaluated by separating a mixture of 20 organic components and saturated alkanes. The results show that higher oven temperature treatment provides higher efficiency while losing a bit of peak symmetry. The thermal treated 1-butylpyridinum bis(trifluoromethylsulfonyl) imide [BPY][NTf2] stationary phase at 240°C demonstrated as high as 8300 plates per meter for naphthalene. This was a 5-fold increase in separation efficiency in comparison to those of the columns treated at 200°C. Albeit being within acceptable ranges, the peak tailing degraded from 1.17 to 1.46 for naphthalene when the processing temperature for coating increased. Both chemical and physical deactivation process increased separation efficiencies and peak resolution.It is still a challenge to discover and identify individual bioactive compounds directly in multicomponent mixtures. Current workflows are too tedious for routine use. Hence, the hyphenation of separation and detection techniques is a powerful tool to maximize the information obtained by a single sample run. A robust eight-dimensional (8D) hyphenation was developed. Orthogonal separations, biological assay detection, analyte trapping, desalting, and physico-chemical detections were arranged in the following order, i.e. 1) normal phase high-performance thin-layer chromatography (NP-HPTLC) separation, 2) Vis detection, 3) UV detection, 4) fluorescence detection (FLD), 5) bioassay for effect-directed analysis (EDA), 6) heart-cut trapping/desalting/elution to reversed phase high-performance liquid chromatography (RP-HPLC) separation, 7) photodiode array (PDA) and 8) mass spectrometry (MS) detection. For the first time, the hyphenation exploited online analyte trapping to desalt the eluted bioactive zone from the plate containing highly salted bioassay media. Subsequent valve switching guided the trapped analyte(s) to the main column, followed by multiple detection. As proof-of-principle, cinnamon samples were analyzed by NP-HPTLC-UV/Vis/FLD-EDA-RP-HPLC-PDA-MS, whereby a bioactive zone was separated into two distinct peaks detected by PDA and MS to be 2-methoxy cinnamaldehyde and cinnamaldehyde. The developed 8D hyphenation is applicable for routine, allowing the non-target high-throughput screening of complex samples for individual bioactive compounds.Aristolochic acid Ⅰ is a nephrotoxic compound and exist in some traditional Chinese medicines at trace level. Up to now, specific enrichment of aristolochic acid Ⅰ remains important procedure and key problem in its analysis. In this study, melamine was proposed as the recognition unit and grafted on the surface of metal-organic framework to fabricate a specific material for aristolochic acid Ⅰ. This material was prepared by using a two-step strategy and the preparation process was optimized. The physical and chemical properties were investigated using scanning electron microscopy, Fourier-transfer infrared spectroscopy, X-ray diffraction and nitrogen adsorption-desorption techniques. Adsorption properties were evaluated by binding experiments. The melamine modified material exhibited a uniform morphology, high specific surface area (460.20 m2 g-1), high adsorption capacity (25.57 mg g-1), fast mass transfer rate and excellent selectivity. Further, a specific and sensitive method was established by using this material as adsorbent of mini-solid phase extraction. The limit of detection was as low as 0.02 μg mL-1. Therefore, melamine modified metal-organic framework is an ideal adsorbent for the recognition and enrichment of aristolochic acid Ⅰ.Pittosporum angustifolium, known as gumbi gumbi, is a native Australian plant, which has traditionally been used as an Aboriginal medicine. This study investigates the effect of different solvents and extractive fermentation on the content and natural products composition of Pittosporum angustifolium extracts, and compares their antioxidant activity, in vitro α-amylase inhibition, and anti-inflammatory properties. Anti-inflammatory activity of the extracts was determined by measuring the inhibition of nitric oxide (NO) production. Extracts were characterised with FTIR-ATR spectroscopy, and screened for antioxidant activities and α-amylase inhibitory activity via High-performance thin-layer chromatography (HPTLC)-Effect-directed analysis (EDA) with direct bioautography. HPTLC combined with chemical derivatization and bioassays was used for EDA screening. The results show that lactic acid fermentation of gumbi gumbi leaves boosts the antioxidant activity in extracts by increasing the total phenolic content, but does not affect (increase or decrease) α-amylase inhibitory activity or nitrogen scavenging/anti-inflammatory activity.