Lundingrojas5905

Z Iurium Wiki

Axons extend for tremendously long distances from the neuronal soma and make use of localized mRNA translation to rapidly respond to different extracellular stimuli and physiological states. The locally synthesized proteins support many different functions in both developing and mature axons, raising questions about the mechanisms by which local translation is organized to ensure the appropriate responses to specific stimuli. Publications over the past few years have uncovered new mechanisms for regulating the axonal transport and localized translation of mRNAs, with several of these pathways converging on the regulation of cohorts of functionally related mRNAs - known as RNA regulons - that drive axon growth, axon guidance, injury responses, axon survival and even axonal mitochondrial function. Recent advances point to these different regulatory pathways as organizing platforms that allow the axon's proteome to be modulated to meet its physiological needs.The past several years have brought revelations and paradigm shifts in research on the cerebellum. Historically viewed as a simple sensorimotor controller with homogeneous architecture, the cerebellum is increasingly implicated in cognitive functions. It possesses an impressive diversity of molecular, cellular and circuit mechanisms, embedded in a dynamic, recurrent circuit architecture. Recent insights about the diversity and dynamism of the cerebellum provide a roadmap for the next decade of cerebellar research, challenging some old concepts, reinvigorating others and defining major new research directions.GABA interneurons play a critical role in higher brain functions. Astrocytic glial cells interact with synapses throughout the whole brain and are recognized as regulatory elements of excitatory synaptic transmission. However, it is largely unknown how GABAergic interneurons and astrocytes interact and contribute to stable performance of complex behaviors. Here, we found that genetic ablation of GABAB receptors in medial prefrontal cortex astrocytes altered low-gamma oscillations and firing properties of cortical neurons, which affected goal-directed behaviors. Remarkably, working memory deficits were restored by optogenetic stimulation of astrocytes with melanopsin. Furthermore, melanopsin-activated astrocytes in wild-type mice enhanced the firing rate of cortical neurons and gamma oscillations, as well as improved cognition. Therefore, our work identifies astrocytes as a hub for controlling inhibition in cortical circuits, providing a novel pathway for the behaviorally relevant midrange time-scale regulation of cortical information processing and consistent goal-directed behaviors.Cortical neurons process information on multiple timescales, and areas important for working memory (WM) contain neurons capable of integrating information over a long timescale. However, the underlying mechanisms for the emergence of neuronal timescales stable enough to support WM are unclear. By analyzing a spiking recurrent neural network model trained on a WM task and activity of single neurons in the primate prefrontal cortex, we show that the temporal properties of our model and the neural data are remarkably similar. Dissecting our recurrent neural network model revealed strong inhibitory-to-inhibitory connections underlying a disinhibitory microcircuit as a critical component for long neuronal timescales and WM maintenance. Tofacitinib research buy We also found that enhancing inhibitory-to-inhibitory connections led to more stable temporal dynamics and improved task performance. Finally, we show that a network with such microcircuitry can perform other tasks without disrupting its pre-existing timescale architecture, suggesting that strong inhibitory signaling underlies a flexible WM network.Autonomous regulation of the intestine requires the combined activity of functionally distinct neurons of the enteric nervous system (ENS). However, the variety of enteric neuron types and how they emerge during development remain largely unknown. Here, we define a molecular taxonomy of 12 enteric neuron classes within the myenteric plexus of the mouse small intestine using single-cell RNA sequencing. We present cell-cell communication features and histochemical markers for motor neurons, sensory neurons and interneurons, together with transgenic tools for class-specific targeting. Transcriptome analysis of the embryonic ENS uncovers a novel principle of neuronal diversification, where two neuron classes arise through a binary neurogenic branching and all other identities emerge through subsequent postmitotic differentiation. We identify generic and class-specific transcriptional regulators and functionally connect Pbx3 to a postmitotic fate transition. Our results offer a conceptual and molecular resource for dissecting ENS circuits and predicting key regulators for directed differentiation of distinct enteric neuron classes.Fingertip mechanoreceptors comprise sensory neuron endings together with specialized skin cells that form the end-organ. Exquisitely sensitive, vibration-sensing neurons are associated with Meissner's corpuscles in the skin. In the present study, we found that USH2A, a transmembrane protein with a very large extracellular domain, was found in terminal Schwann cells within Meissner's corpuscles. Pathogenic USH2A mutations cause Usher's syndrome, associated with hearing loss and visual impairment. We show that patients with biallelic pathogenic USH2A mutations also have clear and specific impairments in vibrotactile touch perception, as do mutant mice lacking USH2A. Forepaw rapidly adapting mechanoreceptors innervating Meissner's corpuscles, recorded from Ush2a-/- mice, showed large reductions in vibration sensitivity. However, the USH2A protein was not found in sensory neurons. Thus, loss of USH2A in corpuscular end-organs reduced mechanoreceptor sensitivity as well as vibration perception. Thus, a tether-like protein is required to facilitate detection of small-amplitude vibrations essential for the perception of fine-grained tactile surfaces.Human genomes are typically assembled as consensus sequences that lack information on parental haplotypes. Here we describe a reference-free workflow for diploid de novo genome assembly that combines the chromosome-wide phasing and scaffolding capabilities of single-cell strand sequencing1,2 with continuous long-read or high-fidelity3 sequencing data. Employing this strategy, we produced a completely phased de novo genome assembly for each haplotype of an individual of Puerto Rican descent (HG00733) in the absence of parental data. The assemblies are accurate (quality value > 40) and highly contiguous (contig N50 > 23 Mbp) with low switch error rates (0.17%), providing fully phased single-nucleotide variants, indels and structural variants. A comparison of Oxford Nanopore Technologies and Pacific Biosciences phased assemblies identified 154 regions that are preferential sites of contig breaks, irrespective of sequencing technology or phasing algorithms.

Autoři článku: Lundingrojas5905 (Bisgaard Munn)