Lundingkristiansen4149
Lactobacillus fermentum MCC2760 is a probiotic strain proven earlier for cholesterol-reducing and anti-inflammatory properties in vitro and in vivo. This study investigates L. fermentum MCC2760-based probiotic curd in high-cholesterol diet (HCD)-fed C57BL6 mice. The mice were grouped into normal diet control, high-cholesterol diet control, normal diet with probiotic supplementation, and high-cholesterol diet with probiotic supplementation. Control groups and treatment groups were supplemented with market curd and probiotic curd, respectively, via oral gavage for eight weeks. The probiotic count was maintained at 10.95 log CFU/mL in the developed probiotic curd. The HCD group showed an increase in feed intake and body weight. Reduction in the levels of serum cholesterol, triglycerides, low-density lipoprotein cholesterol, glucose, aspartate aminotransferase, and alanine transaminase was observed in probiotic-supplemented groups. The probiotic-supplemented group resulted in an increase in Lactobacillus spp. count along with reduced pathogen count in the feces. Probiotic supplementation also showed a reduction in the bacterial translocation count in mesenteric adipose tissue. Expression of inflammatory markers by qPCR showed the decline in the fold change of TNF-α, IL-6, and IL-12 and elevation in the fold change of IL-10 in the adipose tissue of the probiotic-treated group. Probiotic supplementation also improved the expression of GLP-1, ZO-1, and CB2 in the intestine. They were thus possibly playing a role in the enhancement of barrier function. Histopathological sections showed improvement in the cellular infiltration and pathological indications due to the high-cholesterol diet intake. Our study also confirmed that probiotics could increase serum antioxidant enzymes in treated groups, showing their beneficial antioxidant activity. It suggests the anti-inflammatory, antioxidant effect, and gut barrier function of the given probiotic formulation, which ameliorate hypercholesterolemia.Bacterial quorum sensing (QS) is anticipated as a new potential target for the development of antimicrobial drugs. An anti-QS substance against Chromobacterium violaceum CV026 and Pseudomonas aeruginosa PA01 has been isolated and purified from the crude extracts of the marine fungus Penicillium chrysogenum DXY-1, and the accurate structure was identified as cyclo(l-Tyr-l-Pro). This cyclic dipeptide at sub-minimum inhibitory concentration can decrease the QS-regulated violacein production of C. violaceum CV026 by 79% and QS-mediated pyocyanin production, proteases, and elastase activity of P. aeruginosa PA01 by 41%, 20%, and 32%, respectively. In addition, it can also destroy the biofilm formation and decrease QS gene expression of P. aeruginosa PA01. Molecular docking was further performed, and the obtained data indicated that this dipeptide blocks the effect of QS autoinducers through competitive binding to the same pocket of the receptor proteins. We expect this anti-QS cyclic dipeptide to be a potential pro-drug treating drug-resistant P. aeruginosa infections, and these findings could relieve the alarming problem of microbial resistance to antimicrobial drugs.Sulfur-free molybdenum carbides have the potential to replace the conventional sulfided catalysts used for hydrotreating. For these catalysts, it is not necessary to add sulfur to maintain their activity. This fact makes it worthwhile to continue working on improving their hydrotreating efficiency. According to our previous studies, the addition of Co or Ni promotes the hydrotreating activity, but only significant in the case of hydrodesulfurization efficiency (up to 30%). To increase the hydrodenitrogenation efficiency, other promoters, such as phosphorus, can be added. However, most of the published studies do not focus on co-processing or only on hydrotreating of gas oil model molecules at a laboratory scale. In this paper, we build on our previous research by studying five sulfur-free phosphorus-modified MoCx/Al2O3 catalysts (0.5, 1.5, 2.5, 3.5, and 4.5 wt %) for the hydrotreating of atmospheric gas oil and co-processing with rapeseed oil (5, 10, and 25 wt %) under industrial conditions (330-350 °C, 5.5 MPa, WHSV 1-2 h-1). A phosphorus content up to 1.5 wt % promoted the hydrodesulfurization (5-10%) and the hydrodenitrogenation (10-25%) efficiencies of catalysts. Moreover, the triglycerides addition did not significantly decrease the catalyst activity during co-processing. Therefore, our results enable us to define the range of phosphorus addition that enhances MoCx activity using industrial conditions and commercial feedstocks, pointing the way to develop a suitable and sulfur-free alternative to conventional hydrotreating catalysts.To investigate and better understand the mechanism of coal spontaneous combustion, the distributions, evolution, and oxidation characteristics of functional groups in different coal samples were characterized using in situ Fourier transform infrared (FTIR) and electron paramagnetic resonance (EPR) experiments. The macroscopic characteristics of coal spontaneous combustion in relation to functional groups were also analyzed using the thermogravimetric/differential scanning calorimetry-FTIR coupling technique. The experimental results indicated that -OH was the most active groups of coal spontaneous combustion. It not only could react with the absorbed oxygen spontaneously but also found to be the main product of the chemisorption. Consequently, -OH was believed to contribute most both for the loss and increase of coal mass during the process of spontaneous combustion. Aliphatic hydrocarbons were the main components to form -C-O-O• and could be further oxidized into C=O. However, reactions between aliphatic hydrocarbons and oxygen were nonspontaneous. Tie2 kinase inhibitor 1 chemical structure EPR experiments suggested that the tendency of coal spontaneous combustion acutely depended on the stability and survival time of free radicals. The more the stable and longer survival time of free radicals are, the lower the tendency of coal spontaneous combustion is.An effective NO x prediction model is the basis for reducing pollutant emissions. In this paper, a real-time NO x prediction model based on an ensemble deep belief network (DBN) is proposed. Variable importance projection analysis is adopted to screen variables, the time delay of each variable is estimated, and the phase space of the original sample is reconstructed by analyzing the historical data. An ensemble strategy based on random subspace is presented, including the data set partition method and ensemble mode of the model. First, subspaces are constructed according to the component information extracted by partial least squares. Then, the deep belief network is used as a submodel. Finally, a back propagation neural network is developed for model combination. The ensemble deep belief network model has been used to model the NO x emission prediction of a 660 MW boiler. The simulation results show that the ensemble DBN model can fully exploit the nonlinear mapping relationship between input variables and NO x concentration by using various learning learners.