Lucasmogensen9306
Although a series of complexes with rare earth (RE) metal-metal bonds have been reported, complexes which have multiple RE-Rh bonds are unknown. Here we present the identification of the first example of a molecule containing multiple RE-Rh bonds. The complex with multiple Ce-Rh bonds was synthesized by the reduction of a d-f heterometallic molecular cluster CeN[(CH2CH2NPiPr2)RhCl(COD)]3 with excess potassium-graphite. The oxidation state of Ce in 3a appears to be a mixture of Ce(III) and Ce(IV), which was confirmed by X-ray photoelectron spectroscopy, magnetism, and theoretical investigations (DFT and CASSCF). For comparison, the analogous species with multiple La(III)-Rh and Nd(III)-Rh bonds were also constructed. This study provides a possible route for the construction of complexes with multiple RE metal-metal bonds and an investigation of their potential properties and applications.Developing nanoscale electrical characterization techniques adapted to three-dimensional (3D) geometry is essential for optimization of the epitaxial structure and doping process of nano- and microwires. In this paper, we demonstrate the assessment of the depletion width as well as the doping profile at the nanoscale of individual microwire core-shell light-emitting devices by capacitance-voltage measurements. A statistical study carried out on single wires shows the consistency of the doping profile values measured for individual microwires compared to assemblies of hundreds of wires processed on the same sample. The robustness of this method is then demonstrated on four epitaxial structures with different growth and doping conditions. Finally, electron-beam-induced current and secondary electron profiles are used to validate the depletion region width and the position in the core-shell structure.Surfactant crystals can stabilize liquid foams. The crystals are adsorbed at bubble surfaces, slowing down coarsening and coalescence. Excess crystals in the liquid channels between bubbles arrest drainage, leading to ultrastable foams. The melting of crystals upon raising the temperature allows thermoresponsive foams to be designed. In the case of oil foams, the stabilization by crystals received substantial renewed interest in the last 5 years due to their potential applications, particularly in the food industry. For aqueous foams, several reports exist on foams stabilized by crystals. However, these two kinds of liquid foams possess similarities in terms of stabilization mechanisms and the design of surfactant crystal systems. This field will certainly grow in the coming years, and it will contribute to the engineering of new soft materials not only for food but also for cosmetics, pharmaceuticals, and biomedical applications.A novel cationic metal-organic framework composed of Cu2(COO)4 paddle-wheel units and a tetracarboxylic viologen derivative, namely, [Cu2(bdcbp)(H2O)2]·2NO3·2H2On (Cu-CMOF, H4bdcbpCl2 = 1,1'-bis(3,5-dicarboxyphenyl)-4,4'-bipyridinium dichloride), has been successfully synthesized and structurally characterized. In Cu-CMOF, the Cu2(COO)4 unit and viologen derivative both act as four-connected nodes forming an ssb-type cationic network with 42.84 topology, in which the positive charges are distributed on the organic viologen moieties. Deeper insight of the structure indicates that the 3D architecture of Cu-CMOF can be seen as packing of a 26-faceted polyhedral cage and two cuboid cages. Notably, Cu-CMOF displays a highly efficient anion exchange ability for capture and removal of anionic pollutants. UV-vis absorption spectra and digital images demonstrate that Cu-CMOF is capable of adsorbing the dichromate anion and anionic dyes effectively, such as methyl orange (MO-), Congo red (CR2-), and New Coccine (NC3-). Meaningfully, anionic dyes (MO-, CR2-, and NC3-) can be efficiently and selectively removed by Cu-CMOF in the presence of cationic dye methylene blue (MLB+). selleck products Such behaviors of anionic pollutant adsorption and dye separation are mainly caused by an ion-exchange process facilitated by the large cavity and decentralized distribution of positive charge in Cu-CMOF.Lithium-rich nickel manganese cobalt oxide (LRNMC) is being explored as an alternative to stoichiometric nickel manganese cobalt oxide (NMC) cathode materials due to its higher, initially accessible, energy-storage capacity. This higher capacity has been associated with reversible O oxidation; however, the mechanism through which the change in O chemistry is accommodated by the surrounding cathode structure remains incomplete, making it challenging to design strategies to mitigate poor electrode performance resulting from extended cycling. Focusing on LRNMC cathodes, we identify nanoscale domains of lower electron density within the cathode as a structural consequence of O oxidation using small-angle X-ray scattering (SAXS) and operando X-ray diffraction (XRD). A feature observed in the small angle scattering region suggests the formation of nanopores, which first appears during O oxidation, and is partially reversible. This feature is not present in traditional cathode materials, including stoichiometric NMC and lithium nickel cobalt aluminum oxide (NCA) but appears to be common to other Li-rich systems tested here, Li2RuO3 and Li1.3Nb0.3Mn0.4O2.The successful enlargement of the curved π-electron periphery of the wizard hat-shaped polycyclic aromatic compound 1 is described. The target structure 2 features an m,m,p,m,m,p,m,m,p-nonaphenylene belt fused to a central tribenzotriquinacene unit. The synthesis involves a multiple regioconvergent Scholl-type dehydrocyclization as the key step. Spectroscopic, structural, and electronic properties of the title compound 2 are reported.The sesquiterpene-tropolones belong to a distinctive structural class of meroterpene natural products with impressive biological activities, including anticancer, antifungal, antimalarial, and antibacterial. In this article, we describe a concise, modular, and cycloaddition-based approach to a series of sesquiterpene mono- and bistropolones, including (-)-epolone B, (+)-isoepolone B, (±)-dehydroxypycnidione, and (-)-10-epi-pycnidione. Alongside the development of a general strategy to access this unique family of metabolites were computational modeling studies that justified the diastereoselectivity observed during key cycloadditions. Ultimately, these studies prompted stereochemical reassignments of the pycnidione subclass and shed additional light on the biosynthesis of these remarkable natural products.