Lowrylewis3007
RPBE-vdW-DF and BEEF-vdW were found to perform quite well even in terms of absolute numbers. Both functionals provided barrier heights for the energetically lowest lying transition state that are within 1 kcal/mol of the DMC value.A general construction of an ensemble N-representable one-electron reduced density matrix Γ1(r1→';r→1) is presented. Unlike the conventional spectral representation, it explicitly incorporates the recently derived discontinuity in the fifth derivative of Γ1(r1→';r→1) with respect to |r1→'-r→1|. Its practical relevance in the context of the density-matrix functional theory is discussed.The overlap, or similarity, between liquid configurations is at the core of the mean-field description of the glass transition and remains a useful concept when studying three-dimensional glass-forming liquids. In liquids, however, the overlap involves a tolerance, typically of a fraction a/σ of the inter-particle distance, associated with how precisely similar two configurations must be for belonging to the same physically relevant "state." Here, we systematically investigate the dependence of the overlap fluctuations and of the resulting phase diagram when the tolerance is varied over a large range. We show that while the location of the dynamical and thermodynamic glass transitions (if present) is independent of a/σ, that of the critical point associated with a transition between a low- and a high-overlap phase in the presence of an applied source nontrivially depends on the value of a/σ. We rationalize our findings by using liquid-state theory and the hypernetted-chain approximation for correlation functions. In addition, we confirm the theoretical trends by studying a three-dimensional glass-former by computer simulations. We show, in particular, that a range of a/σ below what is commonly considered maximizes the temperature of the critical point, pushing it up in a liquid region where viscosity is low and computer investigations are easier due to a significantly faster equilibration.We studied the positron (e+) interaction with the hydrogen molecular dianion H22- to form the positronic bound state of [H-; e+; H-] using the first-principles quantum Monte Carlo method combined with the multi-component molecular orbital one. H22- itself is unstable, but it was shown that such an unbound H22- may become stable by intermediating a positron and forming the positronic covalent bond of the [H-; e+; H-] system [J. Charry et al., Angew. Chem., Int. Ed. 57, 8859-8864 (2018)]. We newly found that [H-; e+; H-] has double minima containing another positronic bound state of [H2; Ps-]-like configuration with the positronium negative ion Ps- at the bond distance approximately equal to the equilibrium H2 molecule. Our multi-component variational Monte Carlo calculation and the multi-component configuration interaction one resulted in the positronic covalent bonded structure being the global minimum, whereas a more sophisticated multi-component diffusion Monte Carlo calculation clearly showed that the [H2; Ps-]-like structure at the short bond distance is energetically more stable than the positronic covalent bonded one. The relaxation due to interparticle correlation effects pertinent to Ps- (or Ps) formation is crucial for the formation of the Ps-A2-like structure for binding a positron to the non-polar negatively charged dihydrogen.Open-system simulations of quantum transport provide a platform for the study of true steady states, Floquet states, and the role of temperature, time dynamics, and fluctuations, among other physical processes. They are rapidly gaining traction, especially techniques that revolve around "extended reservoirs," a collection of a finite number of degrees of freedom with relaxation that maintains a bias or temperature gradient, and have appeared under various guises (e.g., the extended or mesoscopic reservoir, auxiliary master equation, and driven Liouville-von Neumann approaches). Yet, there are still a number of open questions regarding the behavior and convergence of these techniques. Here, we derive general analytical solutions, and associated asymptotic analyses, for the steady-state current driven by finite reservoirs with proportional coupling to the system/junction. In doing so, we present a simplified and unified derivation of the non-interacting and many-body steady-state currents through arbitrary junctions, including outside of proportional coupling. We conjecture that the analytic solution for proportional coupling is the most general of its form for isomodal relaxation (i.e., relaxing proportional coupling will remove the ability to find compact, general analytical expressions for finite reservoirs). These results should be of broad utility in diagnosing the behavior and implementation of extended reservoir and related approaches, including the convergence to the Landauer limit (for non-interacting systems) and the Meir-Wingreen formula (for many-body systems).Broad-band pump-probe spectroscopy combined with global and target analysis is employed to study the vibronic and excitonic dynamics of two dimers and a tetramer of perylenediimides. A simultaneous analysis is developed for two systems that have been measured in the same conditions. This enhances the resolvability of the vibronic and excitonic dynamics of the systems, and the solvent contributions that are common in the experiments. We resolve two oscillations of 1399 cm-1 or 311 cm-1 damped with ≈30/ps involved in vibrational relaxation and two more oscillations of 537 cm-1 or 136 cm-1 damped with ≈3/ps. A relaxation process with a rate of 2.1/ps-3.2/ps that is positively correlated with the excitonic coupling was discovered in all three model systems, attributed to annihilation of the one but lowest exciton state.The surface plasmon response of a cross-sectional segment of a wrinkled gold film is studied using electron energy loss spectroscopy (EELS). EELS data demonstrate that wrinkled gold structures act as a suitable substrate for surface plasmons to propagate. The intense surface variations in these structures facilitate the resonance of a wide range of surface plasmons, leading to the broadband surface plasmon response of these geometries from the near-infrared to visible wavelengths. The metallic nanoparticle boundary element method toolbox is used to simulate plasmon eigenmodes in these structures. BML-275 2HCl Eigenmode simulations show how the diverse morphology of the wrinkled structure leads to its high spectral complexity. Micron-sized structural features that do not provide interactions between segments of the wrinkle have only a small effect on the surface plasmon resonance response, whereas nanofeatures strongly affect the resonant modes of the geometry. According to eigenmode calculations, different eigenenergy shifts around the sharp folds contribute to the broadband response and infrared activity of these structures; these geometrical features also support higher energy (shorter wavelength) symmetric and anti-symmetric plasmon coupling across the two sides of the folds.