Lottkirkpatrick8940
For navigation, e-TM applies a transfer learning paradigm to integrate human demonstrations into a pretrained locomotion network for smoother movements. Experimental results based on VizDoom, a simulated 3-D environment, have shown that, compared to semiparametric topological memory (SPTM), a state-of-the-art model, e-TM reduces the time costs of navigation significantly while learning much sparser topological graphs.Few-shot learning, aiming to learn novel concepts from one or a few labeled examples, is an interesting and very challenging problem with many practical advantages. Existing few-shot methods usually utilize data of the same classes to train the feature embedding module and in a row, which is unable to learn adapting to new tasks. Besides, traditional few-shot models fail to take advantage of the valuable relations of the support-query pairs, leading to performance degradation. see more In this article, we propose a transductive relation-propagation graph neural network (GNN) with a decoupling training strategy (TRPN-D) to explicitly model and propagate such relations across support-query pairs, and empower the few-shot module the ability of transferring past knowledge to new tasks via the decoupling training. Our few-shot module, namely TRPN, treats the relation of each support-query pair as a graph node, named relational node, and resorts to the known relations between support samples, including both intraclass commonality and interclass uniqueness. Through relation propagation, the model could generate the discriminative relation embeddings for support-query pairs. To the best of our knowledge, this is the first work that decouples the training of the embedding network and the few-shot graph module with different tasks, which might offer a new way to solve the few-shot learning problem. Extensive experiments conducted on several benchmark datasets demonstrate that our method can significantly outperform a variety of state-of-the-art few-shot learning methods.Step length asymmetry (SLA) is common in most stroke survivors. Several studies have shown that factors such as paretic propulsion can explain between-subjects differences in SLA. However, whether the factors that account for between-subjects variance in SLA are consistent with those that account for within-subjects, stride-by-stride variance in SLA has not been determined. SLA direction is heterogeneous, and different impairments likely contribute to differences in SLA direction. Here, we identified common predictors between-subjects that explain within-subjects variance in SLA using sparse partial least squares regression (sPLSR). We determined whether the SLA predictors differ based on SLA direction and whether predictors obtained from within-subjects analyses were the same as those obtained from between-subjects analyses. We found that for parti-cipants who walked with longer paretic steps paretic double support time, braking impulse, peak vertical ground reaction force, and peak plantarflexion moment explained 59% of the within-subjects variance in SLA. However the within-subjects variance accounted for by each individual predictor was less than 10%. Peak paretic plantarflexion moment accounted for 4% of the within-subjects variance and 42% of the between-subjects variance in SLA. In participants who walked with shorter paretic steps, paretic and non-paretic braking impulse explained 18% of the within-subjects variance in SLA. Conversely, paretic braking impulse explained 68% of the between-subjects variance in SLA, but the association between SLA and paretic braking impulse was in the opposite direction for within-subjects vs. between-subjects analyses. Thus, the relationships that explain between-subjects variance might not account for within-subjects stride-by-stride variance in SLA.Brain-computer interfaces (BCIs) are an emerging strategy for spinal cord injury (SCI) intervention that may be used to reanimate paralyzed limbs. This approach requires decoding movement intention from the brain to control movement-evoking stimulation. Common decoding methods use spike-sorting and require frequent calibration and high computational complexity. Furthermore, most applications of closed-loop stimulation act on peripheral nerves or muscles, resulting in rapid muscle fatigue. Here we show that a local field potential-based BCI can control spinal stimulation and improve forelimb function in rats with cervical SCI. We decoded forelimb movement via multi-channel local field potentials in the sensorimotor cortex using a canonical correlation analysis algorithm. We then used this decoded signal to trigger epidural spinal stimulation and restore forelimb movement. Finally, we implemented this closed-loop algorithm in a miniaturized onboard computing platform. This Brain-Computer-Spinal Interface (BCSI) utilized recording and stimulation approaches already used in separate human applications. Our goal was to demonstrate a potential neuroprosthetic intervention to improve function after upper extremity paralysis.This study investigates the possibility of estimating lower-limb joint kinematics and meaningful performance indexes for physiotherapists, during gait on a treadmill based on data collected from a sparse placement of new Visual Inertial Measurement Units (VIMU) and the use of an Extended Kalman Filter (EKF). The proposed EKF takes advantage of the biomechanics of the human body and of the investigated task to reduce sensor inaccuracies. Two state-vector formulations, one based on the use of constant acceleration model and one based on Fourier series, and the tuning of their corresponding parameters were analyzed. The constant acceleration model, due to its inherent inconsistency for human motion, required a cumbersome optimisation process and needed the a-priori knowledge of reference joint trajectories for EKF parameters tuning. On the other hand, the Fourier series formulation could be used without a specific parameters tuning process. In both cases, the average root mean square difference and correlation coefficient between the estimated joint angles and those reconstructed with a reference stereophotogrammetric system was 3.5deg and 0.70, respectively. Moreover, the stride lengths were estimated with a normalized root mean square difference inferior to 2% when using the forward kinematics model receiving as input the estimated joint angles. The popular gait deviation index was also estimated and showed similar results very close to 100, using both the proposed method and the reference stereophotogrammetric system. Such consistency was obtained using only three wireless and affordable VIMU located at the pelvis and both heels and tracked using two affordable RGB cameras. Being further easy-to-use and suitable for applications taking place outside of the laboratory, the proposed method thus represents a good compromise between accurate reference stereophotogrammetric systems and markerless ones for which accuracy is still under debate.