Loomiscallahan8618
The CLABSI rate per 1000 patient-days dropped from 3.1 per 1000 device-days to 0.4 per 1000 device-days. We achieved 757 days free of CLABSI in the unit till December 2018 when a single case happened. After that we achieved 602 free days till July 2020 and still counting.
Implementation of evidence-based CLABSI prevention bundle and process monitoring by direct observation led to significant and subsequently sustained improvement in reducing CLABSI rate in adult CICU.
Implementation of evidence-based CLABSI prevention bundle and process monitoring by direct observation led to significant and subsequently sustained improvement in reducing CLABSI rate in adult CICU.Proton Bragg peak irradiation has a higher ionizing density than conventional photon irradiation or the entrance of the proton beam profile. Whether targeting the DNA damage response (DDR) could enhance vulnerability to the distinct pattern of damage induced by proton Bragg peak irradiation is currently unknown. Here, we performed genetic or pharmacologic manipulation of key DDR elements and evaluated DNA damage signaling, DNA repair, and tumor control in cell lines and xenografts treated with the same physical dose across a radiotherapy linear energy transfer spectrum. Radiotherapy consisted of 6 MV photons and the entrance beam or Bragg peak of a 76.8 MeV spot scanning proton beam. More complex DNA double-strand breaks (DSB) induced by Bragg peak proton irradiation preferentially underwent resection and engaged homologous recombination (HR) machinery. Unexpectedly, the ataxia-telangiectasia mutated (ATM) inhibitor, AZD0156, but not an inhibitor of ATM and Rad3-related, rendered cells hypersensitive to more densely ionizing proton Bragg peak irradiation. ATM inhibition blocked resection and shunted more DSBs to processing by toxic ligation through nonhomologous end-joining, whereas loss of DNA ligation via XRCC4 or Lig4 knockdown rescued resection and abolished the enhanced Bragg peak cell killing. Proton Bragg peak monotherapy selectively sensitized cell lines and tumor xenografts with inherent HR defects, and the repair defect induced by ATM inhibitor coadministration showed enhanced efficacy in HR-proficient models. In summary, inherent defects in HR or administration of an ATM inhibitor in HR-proficient tumors selectively enhances the relative biological effectiveness of proton Bragg peak irradiation. SIGNIFICANCE Coadministration of an ATM inhibitor rewires DNA repair machinery to render cancer cells uniquely hypersensitive to DNA damage induced by the proton Bragg peak, which is characterized by higher density ionization.See related commentary by Nickoloff, p. 3156.
Tumor hypoxia fuels an aggressive tumor phenotype and confers resistance to anticancer treatments. We conducted a clinical trial to determine whether the antimalarial drug atovaquone, a known mitochondrial inhibitor, reduces hypoxia in non-small cell lung cancer (NSCLC).
Patients with NSCLC scheduled for surgery were recruited sequentially into two cohorts cohort 1 received oral atovaquone at the standard clinical dose of 750 mg twice daily, while cohort 2 did not. Primary imaging endpoint was change in tumor hypoxic volume (HV) measured by hypoxia PET-CT. Intercohort comparison of hypoxia gene expression signatures using RNA sequencing from resected tumors was performed.
Thirty patients were evaluable for hypoxia PET-CT analysis, 15 per cohort. Median treatment duration was 12 days. Eleven (73.3%) atovaquone-treated patients had meaningful HV reduction, with median change -28% [95% confidence interval (CI), -58.2 to -4.4]. In contrast, median change in untreated patients was +15.5% (95% CI, -6.5 to 35.5). Linear regression estimated the expected mean HV was 55% (95% CI, 24%-74%) lower in cohort 1 compared with cohort 2 (
= 0.004), adjusting for cohort, tumor volume, and baseline HV. A key pharmacodynamics endpoint was reduction in hypoxia-regulated genes, which were significantly downregulated in atovaquone-treated tumors. Data from multiple additional measures of tumor hypoxia and perfusion are presented. No atovaquone-related adverse events were reported.
This is the first clinical evidence that targeting tumor mitochondrial metabolism can reduce hypoxia and produce relevant antitumor effects at the mRNA level. Repurposing atovaquone for this purpose may improve treatment outcomes for NSCLC.
This is the first clinical evidence that targeting tumor mitochondrial metabolism can reduce hypoxia and produce relevant antitumor effects at the mRNA level. Repurposing atovaquone for this purpose may improve treatment outcomes for NSCLC.Heterogeneity is defined as the quality or state of being diverse in character or content. This article summarizes the natural progression from my studies, reported in the first issue of the Journal of Neuroscience, that identified molecular heterogeneity in precursor cells of the developing primate cerebral cortex to the current state in which differences defined at the molecular, cellular, circuit, and systems levels are building data encyclopedias. The emphasis on heterogeneity has impacted many contributors in the field of developmental neuroscience, who have led a quest to determine the extent to which there is diversity, when it appears developmentally, and what heritable and nonheritable factors mediate nervous system assembly and function. Since the appearance of the article on progenitor cell heterogeneity in the inaugural issue of the Journal of Neuroscience, there have been continuous advances in technologies and data analytics that are contributing to a much better understanding of the origins of neurobiological and behavioral heterogeneity.Alzheimer's disease is a devastating neurodegenerative disease with a dramatically increasing prevalence and no disease-modifying treatment. Inflammatory lifestyle factors increase the risk of developing Alzheimer's disease. Zinc deficiency is the most prevalent malnutrition in the world and may be a risk factor for Alzheimer's disease potentially through enhanced inflammation, although evidence for this is limited. Here we provide epidemiological evidence suggesting that zinc supplementation was associated with reduced risk and slower cognitive decline, in people with Alzheimer's disease and mild cognitive impairment. Using the APP/PS1 mouse model of Alzheimer's disease fed a control (35 mg/kg zinc) or diet deficient in zinc (3 mg/kg zinc), we determined that zinc deficiency accelerated Alzheimer's-like memory deficits without modifying amyloid β plaque burden in the brains of male mice. The NLRP3-inflammasome complex is one of the most important regulators of inflammation, and we show here that zinc deficietomatic decline in people with Alzheimer's disease. In an animal model of Alzheimer's disease, zinc deficiency worsened cognitive decline because of an enhancement in NLRP3-driven inflammation. Overall, our data suggest that zinc status affects Alzheimer's disease progression, and that zinc supplementation could slow the rate of cognitive decline.Although immune checkpoint inhibitors (ICIs), such as anti-programmed cell death protein-1 (PD-1), can deliver durable antitumor effects, most patients with cancer fail to respond. Recent studies suggest that ICI efficacy correlates with a higher load of tumor-specific neoantigens and development of vitiligo in patients with melanoma. Here, we report that patients with low melanoma neoantigen burdens who responded to ICI had tumors with higher expression of pigmentation-related genes. Moreover, expansion of peripheral blood CD8+ T cell populations specific for melanocyte antigens was observed only in patients who responded to anti-PD-1 therapy, suggesting that ICI can promote breakdown of tolerance toward tumor-lineage self-antigens. In a mouse model of poorly immunogenic melanomas, spreading of epitope recognition toward wild-type melanocyte antigens was associated with markedly improved anti-PD-1 efficacy in two independent approaches introduction of neoantigens by ultraviolet (UV) B radiation mutagenesis or the therapeutic combination of ablative fractional photothermolysis plus imiquimod. Complete responses against UV mutation-bearing tumors after anti-PD-1 resulted in protection from subsequent engraftment of melanomas lacking any shared neoantigens, as well as pancreatic adenocarcinomas forcibly overexpressing melanocyte-lineage antigens. Our data demonstrate that somatic mutations are sufficient to provoke strong antitumor responses after checkpoint blockade, but long-term responses are not restricted to these putative neoantigens. Epitope spreading toward T cell recognition of wild-type tumor-lineage self-antigens represents a common pathway for successful response to ICI, which can be evoked in neoantigen-deficient tumors by combination therapy with ablative fractional photothermolysis and imiquimod.The ε4 allele of the apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD) and greatly influences the development of amyloid-β (Aβ) pathology. Our current study investigated the potential therapeutic effects of the anti-human APOE antibody HAE-4, which selectively recognizes human APOE that is co-deposited with Aβ in cerebral amyloid angiopathy (CAA) and parenchymal amyloid pathology. In addition, we tested whether HAE-4 provoked brain hemorrhages, a component of amyloid-related imaging abnormalities (ARIA). ARIA is an adverse effect secondary to treatment with anti-Aβ antibodies that can occur in blood vessels with CAA. We used 5XFAD mice expressing human APOE4 +/+ (5XE4) that have prominent CAA and parenchymal plaque pathology to assess the efficacy of HAE-4 compared to an Aβ antibody that removes parenchymal Aβ but increases ARIA in humans. In chronically treated 5XE4 mice, HAE-4 reduced Aβ deposition including CAA compared to a control antibody, whereas the anti-Aβ antibody had no effect on CAA. Furthermore, the anti-Aβ antibody exacerbated microhemorrhage severity, which highly correlated with reactive astrocytes surrounding CAA. In contrast, HAE-4 did not stimulate microhemorrhages and instead rescued CAA-induced cerebrovascular dysfunction in leptomeningeal arteries in vivo. HAE-4 not only reduced amyloid but also dampened reactive microglial, astrocytic, and proinflammatory-associated genes in the cortex. These results suggest that targeting APOE in the core of both CAA and plaques could ameliorate amyloid pathology while protecting cerebrovascular integrity and function.The accumulation of DNA and nuclear components in blood and their recognition by autoantibodies play a central role in the pathophysiology of systemic lupus erythematosus (SLE). Despite the efforts, the sources of circulating autoantigens in SLE are still unclear. Here, we show that in SLE, platelets release mitochondrial DNA, the majority of which is associated with the extracellular mitochondrial organelle. Mitochondrial release in patients with SLE correlates with platelet degranulation. This process requires the stimulation of platelet FcγRIIA, a receptor for immune complexes. Solcitinib Because mice lack FcγRIIA and murine platelets are completely devoid of receptor capable of binding IgG-containing immune complexes, we used transgenic mice expressing FcγRIIA for our in vivo investigations. FcγRIIA expression in lupus-prone mice led to the recruitment of platelets in kidneys and to the release of mitochondria in vivo. Using a reporter mouse with red fluorescent protein targeted to the mitochondrion, we confirmed platelets as a source of extracellular mitochondria driven by FcγRIIA and its cosignaling by the fibrinogen receptor α2bβ3 in vivo.