Longkristoffersen6022
Cs during the post-monsoon campaign were the result of emissions into a very shallow and stagnant boundary layer. The results of this study suggest that despite widespread open burning in India, traffic-related petrol and diesel emissions remain the key drivers of gas-phase urban air pollution in Delhi.In this study, the protective effects of the Ganoderma atrum polysaccharide (PSG-1) on selected tissue (liver, spleen, kidneys and intestine) toxicity induced by acrylamide (AA) in SD rats were investigated. The results showed that pretreatment with PSG-1 could prevent AA-induced damage to liver and kidney functions by increasing the activities of ALT, AST and ALP and the levels of TG, BUN and CR in the serum of AA-treated rats. PSG-1 could also maintain the intestinal barrier function and permeability by preventing the reduction of the serum d-Lac and ET-1 levels in the intestine of AA-treated rats. In addition, AA-induced DNA damage, as indicated by an increase of the 8-OHdG level, was alleviated by pretreatment with PSG-1. Histological observations of the tissues confirmed the protective effects of different doses of PSG-1. Moreover, PSG-1 supplementation reduced oxidative stress and inflammation in rats by upregulating the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities and IL-10 levels, and preventing the overproduction of malondialdehyde (MDA), IL-1β, IL-6, and TNF-α. Thus, these findings suggest that PSG-1 effectively prevents AA-induced damage in the liver, spleen, kidneys, and intestine of rats, partially by alleviating the inflammatory response and oxidative stress and protecting the intestinal integrity and barrier function.Photo-thermal catalysis has recently emerged as an alternative route to drive chemical reactions using light as an energy source. Through the synergistic combination of photo- and thermo-chemical contributions of sunlight, photo-thermal catalysis has the potential to enhance reaction rates and to change selectivity patterns, even under moderate operation conditions. This review provides the fundamentals of localized surface plasmon resonance (LSPR) that explain the photo-thermal effect in plasmonic structures, describes the different mechanistic pathways underlying photo-thermal catalysis, suggests methodologies to disentangle the reaction mechanisms and proposes material design strategies to improve photo-thermal performance. Ultimately, the goal is to pave the way for the wide implementation of this promising technology in the production of synthetic fuels and chemicals.A phosphanido-type bridged bis(imidazolium) salt, readily prepared in two steps via reductive deselenization of a tricyclic 1,4-diphosphinine diselone, affords access to a novel anionic P-functional tricyclic bis(NHC) via deprotonation. The former also offers a P-functionalization/deprotonation sequence to access the first mixed P-substituted tricyclic bis(NHCs), as well as coordination of the phosphorus centers to rhodium(i) fragments.By coupling a newly developed quantum-electronic-state-selected supersonically cooled vanadium cation (V+) beam source with a double quadrupole-double octopole (DQDO) ion-molecule reaction apparatus, we have investigated detailed absolute integral cross sections (σ's) for the reactions, V+[a5DJ (J = 0, 2), a5FJ (J = 1, 2), and a3FJ (J = 2, 3)] + CH4, covering the center-of-mass collision energy range of Ecm = 0.1-10.0 eV. Oxaliplatin Three product channels, VH+ + CH3, VCH2+ + H2, and VCH3+ + H, are unambiguously identified based on Ecm-threshold measurements. No J-dependences for the σ curves (σ versus Ecm plots) of individual electronic states are discernible, which may indicate that the spin-orbit coupling is weak and has little effect on chemical reactivity. For all three product channels, the maximum σ values for the triplet a3FJ state [σ(a3FJ)] are found to be more than ten times larger than those for the quintet σ(a5DJ) and σ(a5FJ) states, showing that a reaction mechanism favoring the conservation of total electroates in the hot filament ionization source, the agreement between these results also confirmed that the V+(a5DJ, a5FJ, and a3FJ) states prepared in this experiment are in single spin-orbit states with 100% purity.To achieve an accurate stopping power ratio (SPR) prediction in particle therapy treatment planning, we previously proposed a simple conversion to the SPR from dual-energy (DE) computed tomography (CT) data via electron density and effective atomic number (Z eff) calibration (DEEDZ-SPR). This study was conducted to carry out an initial implementation of the DEEDZ-SPR conversion method with a clinical treatment planning system (TPS; VQA, Hitachi Ltd., Tokyo) for proton beam therapy. Consequently, this paper presents a proton therapy plan for an anthropomorphic phantom to evaluate the stability of the dose calculations obtained by the DEEDZ-SPR conversion against the variation of the calibration phantom size. Dual-energy x-ray CT images were acquired using a dual-source CT (DSCT) scanner. A single-energy CT (SECT) scan using the same DSCT scanner was also performed to compare the DEEDZ-SPR conversion with the SECT-based SPR (SECT-SPR) conversion. The scanner-specific parameters necessary for the SPR calibration were obtained from the CT images of tissue substitutes in a calibration phantom. Two calibration phantoms with different sizes (a 33 cm diameter phantom and an 18 cm diameter phantom) were used for the SPR calibrations to investigate the beam-hardening effect on dosimetric uncertainties. Each set of calibrated SPR data was applied to the proton therapy plan designed using the VQA TPS with a pencil beam algorithm for the anthropomorphic phantom. The treatment plans with the SECT-SPR conversion exhibited discrepancies between the dose distributions and the dose-volume histograms (DVHs) of the 33 cm and 18 cm phantom calibrations. In contrast, the corresponding dose distributions and the DVHs obtained using the DEEDZ-SPR conversion method coincided almost perfectly with each other. The DEEDZ-SPR conversion appears to be a promising method for providing proton dose plans that are stable against the size variations of the calibration phantom and the patient.