Lomholtappel0630
algorithm has great clinical applicability potential.BACKGROUND North America remains in the midst of an escalating opioid overdose epidemic, largely driven by the influx of synthetic opioids such a fentanyl and related analogues. High rates of mental illness among substance-using populations have been well documented; in particular, opioid-using individuals suffer from high rates of PTSD. Despite the devastating disease burden of both PTSD and OUD, especially within the context of the current opioid overdose epidemic, treatment options and outcomes remain suboptimal. MAIN BODY Comorbid PTSD-OUD is often complex and inextricably intertwined, thereby impeding effective diagnosis, assessment and early intervention. Best outcomes occur when treatment addresses both comorbidities simultaneously, known as parallel or integrative approaches. Despite these findings, affected individuals often do not receive adequate or equitable access to healthcare. The WHO recommends that public spending for both mental and physical aspects of healthcare be equitable to the burden of disease. Despite these recommendations mental healthcare services remain chronically underfunded in Canada. The Mental Health Parity Act is a call for the Canadian government to implement equitable public spending on all aspects of healthcare. Furthermore, prohibitory legislative practices serve to marginalize substance-using populations thereby increasing the likelihood of exposure to traumatic violence and other associated harms. selleck chemicals llc CONCLUSION Efforts are now needed to address regulatory drug-use frameworks and public healthcare policies that perpetuate these inequalities. Alternative regulatory frameworks for drugs and mental health parity should be implemented and evaluated in an effort to reduce violence, trauma and ultimately opioid-related overdose deaths.Following publication of the original article [1], the Authors' Contributions statement need to be changed.BACKGROUND A growing body of studies have indicated that bone marrow mesenchymal stem cells (BMSCs) have powerful analgesic effects in animal models of bone cancer pain. Here, we explored the molecular mechanisms underlying how BMSCs alleviate pain sensation in a mouse model of bone cancer pain. METHODS C3H/HeN adult male mice were used to generate a bone cancer pain model. BMSCs were isolated from mouse bone marrow, modified by transfection with microRNA-9-5p (miR-9-5p), and infused into the spinal cord. Spontaneous flinches, paw withdrawal latency, limb-use score, and weight-bearing score were used to assess pain-related behaviors. ELISA, RT-PCR, western blot, and luciferase assay were used to assess gene expressions. RESULTS Our results show that miR-9-5p regulated the expression of both repressor element silencing transcription factor (REST) and μ-opioid receptors (MOR) by targeting REST in primary mouse BMSCs. Overexpression of miR-9-5p reversed the activation of inflammatory pathway in TNF-α- and IL-6-treated BMSCs. In addition, miR-9-5p modified BMSCs alleviated cancer pain in the sarcoma-inoculated mouse model. MiR-9-5p modified BMSCs suppressed cytokine expression in the spinal cord of sarcoma-inoculated mice by suppressing REST gene expression. CONCLUSIONS Our results indicate that miR-9-5p modified BMSCs can relieve bone cancer pain via modulating neuroinflammation in the central nervous system, suggesting genetically modified BMSCs could be a promising cell therapy in pain management.BACKGROUND Identifying the early-stage colon adenocarcinoma (ECA) patients who have lower risk cancer vs. the higher risk cancer could improve disease prognosis. Our study aimed to explore whether the glandular morphological features determined by computational pathology could identify high risk cancer in ECA via H&E images digitally. METHODS 532 ECA patients retrospectively from 2 independent data centers, as well as 113 from The Cancer Genome Atlas (TCGA), were enrolled in this study. Four tissue microarrays (TMAs) were constructed across ECA hematoxylin and eosin (H&E) stained slides. 797 quantitative glandular morphometric features were extracted and 5 most prognostic features were identified using minimum redundancy maximum relevance to construct an image classifier. The image classifier was evaluated on D2/D3 = 223, D4 = 46, D5 = 113. The expression of Ki67 and serum CEA levels were scored on D3, aiming to explore the correlations between image classifier and immunohistochemistry data and serum CEA levels. The roles of clinicopathological data and ECAHBC were evaluated by univariate and multivariate analyses for prognostic value. RESULTS The image classifier could predict ECA recurrence (accuracy of 88.1%). ECA histomorphometric-based image classifier (ECAHBC) was an independent prognostic factor for poorer disease-specific survival [DSS, (HR = 9.65, 95% CI 2.15-43.12, P = 0.003)]. Significant correlations were observed between ECAHBC-positive patients and positivity of Ki67 labeling index (Ki67Li) and serum CEA. CONCLUSION Glandular orientation and shape could predict the high risk cancer in ECA and contribute to precision oncology. Computational pathology is emerging as a viable and objective means of identifying predictive biomarkers for cancer patients.BACKGROUND Blood removal from cerebrospinal fluid (CSF) in post-subarachnoid hemorrhage patients may reduce the risk of related secondary brain injury. We formulated a computational fluid dynamics (CFD) model to investigate the impact of a dual-lumen catheter-based CSF filtration system, called Neurapheresis™ therapy, on blood removal from CSF compared to lumbar drain. METHODS A subject-specific multiphase CFD model of CSF system-wide solute transport was constructed based on MRI measurements. The Neurapheresis catheter geometry was added to the model within the spinal subarachnoid space (SAS). Neurapheresis flow aspiration and return rate was 2.0 and 1.8 mL/min, versus 0.2 mL/min drainage for lumbar drain. Blood was modeled as a bulk fluid phase within CSF with a 10% initial tracer concentration and identical viscosity and density as CSF. Subject-specific oscillatory CSF flow was applied at the model inlet. The dura and spinal cord geometry were considered to be stationary. Spatial-temporal tracer concentration was quantified based on time-average steady-streaming velocities throughout the domain under Neurapheresis therapy and lumbar drain.