Loganbegum6247

Z Iurium Wiki

Results indicate that diffraction-limited optical performance is recovered, and the maximum intensity increased nearly 3-fold for out-of-focus plane in particle-based tissue phantom. The SPGD algorithm shows great potential for aberration correction and improved run-time performance compared to our previous Resilient backpropagation (Rprop) algorithm when correcting for complex wavefront distortions. The fast computational aberration correction suggests that after further optimization our method can be integrated for future applications in real-time clinical imaging.Blackbody cavity reflectivity is normally measured using an integrating sphere to collect hemispherical reflected radiation from a blackbody opening when illuminated by a directional light source. The challenge of taking this method without an integrating sphere arises for blackbody cavity emissivity measurement in satellites due to space constraints. The ratio of hemispherical-given solid angle reflections is proposed to calculate the total reflected power from a blackbody cavity by multiplying a measurable reflected power in a given solid angle. The ratio is obtained by simulating the distribution relationship between the total hemispherical reflected light power and the reflected light power in the given solid angle under different coating emissivity. The emissivity measurement results are consistent with radiometric method measurements and simulation results, with an uncertainty of 0.0005.We study an analyzer grating based on a scintillation light blocker for a Talbot-Lau grating interferometer. This is an alternative way to analyze the Talbot self-image without the need for an often difficult to fabricate absorption grating for the incident radiation. The feasibility of this approach using a neutron beam has been evaluated and experiments have been conducted at the cold neutron imaging facility of the NIST center for Neutron Research. The neutron grating interferometer with the proposed analyzer grating successfully produced attenuation, differential phase, and dark-field contrast images. In addition, numerical simulations were performed to simulate the Talbot pattern and visibility using scintillation screens of different thicknesses and there is good agreement with the experimental measurements. The results show potential for reducing the difficulty of fabricating analyzer grating, and a possibility for the so-called shadow effect to be eliminated and large-area gratings to be produced, especially when applied to X-rays. We report the performance of the analyzer grating based on a light blocker and evaluate its feasibility for the grating interferometer.We experimentally demonstrate an asymmetric enhancement of the N2+ lasing at 391 nm for the transition between the B2Σu+ (v = 0) and X2Σg+ (v" = 0) states in an intense laser field with the ellipticity, ε, modulated by a 7-order quarter-wave plate (7-QWP). It is found that when the 7-QWP is rotated from α = 0 to 90°, where α is the angle between the polarization direction of the input laser and the slow axis of the 7-QWP, the intensity of the 391-nm lasing is optimized at ε ∼ 0.3 with α∼ 10°-20° and 70°-80° respectively, but the optimization intensity at α∼ 10°-20° is about 4 times smaller than that at α∼ 70°-80°. We interpret the asymmetric enhancement based on a post-ionization coupling model, in which the birefringence of the 7-QWP induces an opposite change in the relative amplitudes of the ordinary (Eo) and extraordinary (Ee) electric components under the two conditions, so that the same temporal separation of Eo and Ee leads to a remarkably different coupling strength for the population transfer from the X2Σg+ (v "=0) to A2Πu (v '=2) states.We demonstrate waveguide-integrated silicon-germanium avalanche photodiodes with a maximum responsivity of 15.2 A/W at 16x avalanche gain, and 33 GHz bandwidth. Intensity-modulation-direct-detection (IMDD) and coherent channel reception test demonstrated the APD's performance with higher-order formats, allowing 32 Gbaud PAM-4 and 40 Gbaud 16QAM channel reception without any digital signal processing conventionally used for receiver impairments mitigation.The dynamics and the decay processes of inner-shell excited atoms are of great interest in physics, chemistry, biology, and technology. The highly excited state decays very quickly through different channels, both radiative and non-radiative. It is therefore a long-standing goal to study such dynamics directly in the time domain. Using few-cycle infrared laser pulses, we investigated the excitation and ionization of inner-shell electrons through laser-induced electron re-collision with the original parent ions and measured the dependence of the emitted x-ray spectra on the intensity and ellipticity of the driving laser. These directly re-colliding electrons can be used as the initiating pump step in pump/probe experiments for studying core-hole dynamics at their natural temporal scale. In our experiment we found that the dependence of the x-ray emission spectrum on the laser intensity and polarization state varies distinctly for the two kinds of atomic systems. Relying on our data and numerical simulations, we explain this behavior by the presence of different excitation mechanisms that are contributing in different ratios to the respective overall x-ray emission yields. Direct re-collision excitation competes with indirect collisions with neighboring atoms by electrons having "drifted away" from the original parent ion.A model based on carrier rate equations is proposed to evaluate the gain saturation and predict the dependence of the output power of a terahertz master-oscillator power-amplifier quantum cascade laser (THz-MOPA-QCL) on the material and structure parameters. The model reveals the design rules of the preamplifier and the power extractor to maximize the output power and the wall-plug efficiency. The correction of the model is verified by its agreement with the experiment results. The optimized MOPA devices exhibit single-mode emission at ∼ 2.6 THz with a side mode suppression ratio of 23 dB, a pulsed output power of 153 mW, a wall-plug efficiency of 0.22%, and a low divergence angle of ∼6°×16°, all measured at an operation temperature of 77 K. this website The model developed here is helpful for the design of MOPA devices and semiconductor optical amplifiers, in which the active region is based on intersubband transitions.

Autoři článku: Loganbegum6247 (Gustafson Tate)