Locklearsutherland9361
6 VP1 proteins and blocking mAbs only recognized non-denatured proteins. The in vitro VLP-HBGA binding blockade assay indicated that the three blocking antibodies exhibited blocking effects against GII.6 NoV VLPs, but not GI.7, GII.3, and GII.4 NoV VLPs. Epitope mapping and HBGA blocking assay indicated that mAbs targeting the predicted surface-exposed loop region did not have blocking effects, suggesting a possible important role of this region in regulating NoV-HBGA interactions. This is the first report regarding the characterization of mAbs with blocking ability against GII.6 NoV VLPs. These mAbs might be useful in facilitating our understanding of this group of viruses. The strain TN638 was isolated from Tunisian soil contaminated with industrial wastewater and selected for its potent antimicrobial activity against the tested Gram positive bacteria Staphylococcus aureus (S. aureus) ATCC 6538 and Listeria monocytogenes (L. monocytogenes) ATCCC 19117, and Gram negative bacteria Agrobacterium tumefaciens (A. tumefaciens) ATCC 23308 and Salmonella typhimurium (S. typhimurium) ATCC 14028 and fungi Candida albicans (C. albicans) ATCC 10231, Rhizoctonia solani (R. solani) ATCC 58938 and Fusarium sp. Solide-state fermentation (SSF) dry crude extract of the TN638 strain presents a strong inhibitory activity notably against the phytopathogenic microorganism A. tumefaciens ATCC 23308 and the two pathogenic bacteria S. aureus ATCC 6538 and L. monocytogenes ATCCC 19117 with a zone of inhibition of 48, 34 and 34 mm respectively. According to the morphological characteristic, the complete 16S rRNA gene nucleotide sequence determination [1492 bp deposited in National Center of Biotechnologym ATCC 14028. The four pure macrotetrolides (4-7), exhibited strong inhibitory effect against all tested Gram positive and Gram negative bacteria notably against A. tumefaciens ATCC 23308 and S. typhimurium ATCC 14028 with a minimum inhibitory concentration (MIC) around 8 μg/mL quite similar to that of ampicillin. Thus, we propose the use of the (SSF) active extract of the S. cavourensis TN638 strain as safe biological product to control disease caused by plant pathogen A. tumefaciens. Also, the purified active molecules produced by this strain could be used in pharmaceutical field. Published by Elsevier Ltd.The pond has a complex microbial ecosystem, including microorganisms in water and sediment, which plays an important role in the health of fish and water quality. The microbial community structure in the ponds can be easily affected by many factors. However, not much is known about the role of different aquaculture model and fish on the microbial community structure in ponds. The purpose of the study was to investigate the microbial diversity and composition of the ponds with different aquaculture model and fish by high-throughput sequencing. A total of 3835072 valid sequences were achieved from 60 samples. Additionally, 2064 and 1917 core OTUs were observed in water and sediment samples, respectively. Our results suggested that sediment samples have a higher abundance and diversity of microbial community than water samples. In all the samples, the four most dominant phyla were Proteobacteria, Cyanobacteria, Actinomycetes and Bacteroides. At the genus level, hgcI_clade and CL500-29_marine_group were the dominant bacteria shared by the water samples and sediment samples. In addition, more bacteria related to eutrophication were found in the group of BF, BC and HSB, which suggested that these ponds may have been eutrophicated. In conclusion, the present study revealed the differences in the structure and diversity of microbial communities in ponds with different aquaculture model and fish. Furthermore, changes in typical bacteria of the ponds contribute to detect water quality and prevent water eutrophication. Florfenicol is widely used to control diseases in aquatic animals, and is used extensively to treat streptococcosis-caused by Streptococcus agalactiae-in the commercially important fish tilapia. There are known issues with the development of florfenicol resistance in Streptococcus agalactiae, but the underlying resistance mechanisms are not clear, a situation currently preventing optimal deployment of antibiotics. Here, we examined the induction of resistance by successively increasing the concentrations of florfenicol, and then used RNA-sequencing (RNA-Seq) to characterize changes in the transcriptomes of a florfenicol-resistant strain (H51-R) and a florfenicol-sensitive strain (H51-S). We obtained a total of 18,418,068 sequence reads in H51-R and 16,070,122 sequence reads in H51-S, from which a total of 1940 unigenes were assembled. In total, 376 unigenes were found to be differently expressed genes (DEGs). After florfenicol treatment, 181 genes were upregulated and 195 genes were downregulated. GO functional analysis of the DEGs indicated that the most strongly enriched GO terms included metabolic process (152 genes), catalytic activity (146), and binding (133), with terms including membrane, membrane part, and transporter activity also showing enrichment. KEGG pathway enrichment analysis highlighted that ribosomes were prominently involved in the transcriptional changes associated with florfenicol resistance. This study demonstrates that florfenicol treatment affects multiple biological functions of Streptococcus agalactiae, suggests that florfenicol resistance in Streptococcus agalactiae is closely related to the reduction of intracellular drug accumulation caused by ATP-binding cassette (ABC) transporters, and highlights the potential involvement of altered ribosomal function in florfenicol resistance. BACKGROUND Journal of Oral Biosciences is devoted to the advancement and dissemination of fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT This review features review articles in the fields of "Bone Cell Biology," "Microbiology," "Oral Heath," "Biocompatible Materials," "Mouth Neoplasm," and "Biological Evolution" in addition to the review articles by winners of the Lion Dental Research Award ("Role of nicotinic acetylcholine receptors for modulation of microcircuits in the agranular insular cortex" and "Phospholipase C-related catalytically inactive protein A novel signaling molecule for modulating fat metabolism and energy expenditure") and the Rising Members Award ("Pain mechanism of oral ulcerative mucositis and the therapeutic traditional herbal medicine hangeshashinto," "Mechanisms underlying the induction of regulatory T cells by sublingual immunotherapy," and "Regulation of osteoclast function via Rho-Pkn3-c-Src pathways"), presented by the Japanese Association for Oral Biology. CONCLUSION These reviews in the Journal of Oral Biosciences have inspired the readers of the journal to broaden their knowledge regarding various aspects of oral biosciences. The current editorial review introduces these exciting review articles. V.Amur catfish is extensively distributed and cultured in Asian countries. Despite of economic importance, the genomic information of this species remains limited. A reference transcriptome of Amur catfish was assembled and the sex-biased gene expression in the gonads was characterized using RNA-sequencing. The assembled transcriptome of Amur catfish consisted of 74,840 transcripts. The N50, mean length and max length of transcripts are 1970, 1235 and 16,748 bp. Putative sex-specific transcripts were identified and sex-specific expression of the representative genes was verified by RT-PCR. Differential expression analysis identified 5401 ovary-biased and 5618 testis-biased genes. The ovary-biased genes were mainly enriched in pathways such as RNA transport and ribosome biogenesis in eukaryotes. The testis-biased genes were enriched in calcium signaling and cytokine-cytokine receptor interaction, etc. Our data provide a valuable genomic resource for further investigating the genetic basis of sex determination, sex differentiation and sexual dimorphism of catfish. BACKGROUND No independently-validated score currently exists for risk stratification of patients with frequent premature ventricular contractions (PVCs). Selleckchem EZM0414 OBJECTIVES To develop a risk score to predict adverse events in patients with frequent PVCs. METHODS We analyzed consecutive patients between 2012-2017 undergoing 14-day continuous monitoring with frequent PVCs (>5%) and concurrent echocardiography. We performed binary logistic regression to determine multivariate predictors of adverse LV remodeling (LVEF500ms (OR 4.7, 4 points), Non-sustained VT (OR 5.3, 4 points), forming the ABC-VT risk score. This score predicted future adverse events in both validation cohorts Cohort 1 HR 1.43; 95%CI 1.19-1.73;p less then 0.001, Cohort 2 HR 1.22; 95%CI 1.05-1.42;p=0.01. CONCLUSION The ABC-VT score is a simple tool that predicts adverse LV remodeling and future clinical deterioration in patients with frequent PVCs. Plasmacytoid dendritic cells (pDCs) constitute a unique population of bone marrow-derived cells that play a pivotal role in linking innate and adaptive immune responses. While peripheral tissues are typically devoid of pDCs during steady state, few tissues do host resident pDCs. In the current study, we aim to assess presence and distribution of pDCs in naïve murine limbus and bulbar conjunctiva. Immunofluorescence staining followed by confocal microscopy revealed that the naïve bulbar conjunctiva of wild-type mice hosts CD45+ CD11clow PDCA-1+ pDCs. Flow cytometry confirmed the presence of resident pDCs in the bulbar conjunctiva through multiple additional markers, and showed that they express maturation markers, the T cell co-inhibitory molecules PD-L1 and B7-H3, and minor to negligible levels of T cell co-stimulatory molecules CD40, CD86, and ICAM-1. Epi-fluorescent microscopy of DPE-GFP×RAG1-/- transgenic mice with GFP-tagged pDCs indicated lower density of pDCs in the bulbar conjunctiva compared to the limbus. Further, intravital multiphoton microscopy revealed that resident pDCs accompany the limbal vessels and patrol the intravascular space. In vitro multiphoton microscopy showed that pDCs are attracted to human umbilical vein endothelial cells and interact with them during tube formation. In conclusion, our study shows that the limbus and bulbar conjunctiva are endowed with resident pDCs during steady state, which express maturation and classic T cell co-inhibitory molecules, engulf limbal vessels, and patrol intravascular spaces. PURPOSE To introduce an assessment tool (rubric) for evaluating ophthalmology residents' competency in pterygium surgery. METHODS A panel of experienced international surgeons collaborated and developed the rubric. After describing various stages of the procedure, the Dreyfus scale of skill acquisition was used for scoring each stage. After finalizing the rubric, two surgeons independently evaluated 20 masked pterygium surgery videos of 10 residents and scored the videos according to the rubric. The agreement between the scores of them was examined with the intra-class correlation coefficient test. RESULTS This rubric divides pterygium surgery into 13 different stages and covers the two most common techniques of pterygium surgery; conjunctival autograft and amniotic membrane transplant. The rubric showed face and content validity. Overall, an intraclass correlation coefficient of 0.90 (95% confidence interval 0.76-0.96, P less then 0.001) was achieved between the two surgeons. The residents scored significantly higher on surgeries performed later in their rotation compared to the earlier surgeries (4.