Lloydsalomonsen4545
We describe how to (1) separate whole blood into PBMCs, plasma, and serum fractions, (2) prepare DNA from each of these fractions, (3) prepare dilution standards for absolute quantification, (4) carry out qPCR for either relative or absolute quantification from test samples, (5) analyze qPCR data, and (6) calculate the sample size to adequately power studies. The protocol presented here is suitable for high-throughput use and can be modified to quantify mtDNA from other body fluids, human cells, and tissues.Here we summarize our latest efforts to elucidate the role of mtDNA variants affecting the mitochondrial translation machinery, namely variants mapping to the mt-rRNA and mt-tRNA genes. Evidence is accumulating to suggest that the cellular response to interference with mitochondrial translation is different from that occurring as a result of mutations in genes encoding OXPHOS proteins. As a result, it appears safe to state that a complete view of mitochondrial disease will not be obtained until we understand the effect of mt-rRNA and mt-tRNA variants on mitochondrial protein synthesis. Despite the identification of a large number of potentially pathogenic variants in the mitochondrially encoded rRNA (mt-rRNA) genes, we lack direct methods to firmly establish their pathogenicity. In the absence of such methods, we have devised an indirect approach named heterologous inferential analysis (HIA ) that can be used to make predictions concerning the disruptive potential of a large subset of mt-rRNA variants. We have used HIA to explore the mutational landscape of 12S and 16S mt-rRNA genes. Our HIA studies include a thorough classification of all rare variants reported in the literature as well as others obtained from studies performed in collaboration with physicians. HIA has also been used with non-mammalian mt-rRNA genes to elucidate how mitotypes influence the interaction of the individual and the environment. Regarding mt-tRNA variations, rapidly growing evidence shows that the spectrum of mutations causing mitochondrial disease might differ between the different mitochondrial haplogroups seen in human populations.Mitochondria, similar to living cells and organelles, have a negative membrane potential, which ranges between (-108) and (150) mV as compared to (-70) and (-90) mV of the plasma membrane. Therefore, permeable lipophilic cations tend to accumulate in the mitochondria. Those cations which exhibit fluorescence activity after accumulation into energized systems are widely used to decipher changes in membrane potential by imaging techniques. Here we describe the use of two different dyes for labeling mitochondrial membrane potential (Δψm) in live cells. One is the lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazol-carbocyanine iodide (JC-1), which alters reversibly its color from green (J-monomer, at its low concentration in the cytosol) to red (J-aggregates, at its high concentration in active mitochondria) with increasing mitochondrial membrane potential (Δψm). The other is MitoTracker® Orange, a mitochondrion-selective probe which passively diffuses across the plasma membrane and accumulates in active mitochondria depending on their Δψm. Baxdrostat purchase We show that in addition to changes in Δψm, these specific dyes can be used to follow alterations in mitochondrial distribution and mitochondrial network connectivity. We suggest that JC-1 is a preferable probe to compare between different cell types and cell state, as a red to green ratio of fluorescence intensities is used for analysis. This ratio depends only on the mitochondrial membrane potential and not on other cellular and/or mitochondrial-dependent or independent factors that may alter, for example, due to treatment or disease state. However, in cells labeled either with green or red fluorescence protein, JC-1 cannot be used. Therefore, other dyes are preferable. We demonstrate various applications of JC-1 and MitoTracker Orange staining to study mitochondrial abnormalities in different cell types derived from schizophrenia patients and healthy subjects.The Protoporphyrin IX-Triplet State Lifetime Technique (PpIX-TSLT) has been proposed by us as a potential clinical noninvasive tool for monitoring mitochondrial function. We have been working on the development of mitochondrial respirometry for monitoring mitochondrial oxygen tension (mitoPO2) and mitochondrial oxygen consumption (mitoVO2) in skin. In this work, we describe the principles of the method in small experimental animals.Mitochondria have complex ultrastructure which includes continuous subcompartments, such as matrix, intermembrane space, and two membranes, as well as focal structures, such as nucleoids, RNA granules, and mitoribosomes. Comprehensive studies of the spatial distribution of proteins and RNAs inside the mitochondria are necessary to understand organellar gene expression processes and macromolecule targeting pathways. Here we give examples of distribution analysis of mitochondrial proteins and transcripts by conventional microscopy and the super-resolution technique 3D STORM. We provide detailed protocols and discuss limitations of immunolabeling of mitochondrial proteins and newly synthesized mitochondrial RNAs by bromouridine incorporation and single-molecule RNA FISH in hepatocarcinoma cells.Mice missing the Complex I subunit NADHUbiquinone Oxidoreductase Fe-S Protein 4 (NDUFS4) of the electron transport chain are a leading model of the severe mitochondrial disease Leigh syndrome. These mice have enabled a better understanding of mitochondrial dysfunction in human disease, as well as in the discovery of interventions that can potentially suppress mitochondrial disease manifestations. In addition, increasing evidence suggests significant overlap between interventions that increase survival in NDUFS4 knockout mice and that extend life span during normative aging. This chapter discusses the practical aspects of handling and studying these mice, which can be challenging due to their severe disease phenotype. Common procedures such as breeding, genotyping, weaning, or treating these transgenic mice are also discussed.